Search results for: Silicon carbide
72 Thermal Performance of a Pair of Synthetic Jets Equipped in Microchannel
Authors: J. Mohammadpour, G. E. Lau, S. Cheng, A. Lee
Abstract:
Numerical study was conducted using two synthetic jet actuators attached underneath a micro-channel. By fixing the oscillating frequency and diaphragm amplitude, the effects on the heat transfer within the micro-channel were investigated with two synthetic jets being in-phase and 180° out-of-phase at different orifice spacing. There was a significant benefit identified with two jets being 180° out-of-phase with each other at the orifice spacing of 2 mm. By having this configuration, there was a distinct pattern of vortex forming which disrupts the main channel flow as well as promoting thermal mixing at high velocity within the channel. Therefore, this configuration achieved higher cooling performance compared to the other cases studied in terms of the reduction in the maximum temperature and cooling uniformity in the silicon wafer.Keywords: Synthetic jets, microchannel, electronic cooling, computational fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81171 The Hardware Implementation of a Novel Genetic Algorithm
Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras
Abstract:
This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.Keywords: Genetic algorithms, hardware-based machinelearning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164070 Application of the Virtual Reality Modeling Language for Design of Automated Workplaces
Authors: Jozef Novak-Marcincin
Abstract:
Virtual Reality Modelling Language (VRML) is description language, which belongs to a field Window on World virtual reality system. The file, which is in VRML format, can be interpreted by VRML explorer in three-dimensional scene. VRML was created with aim to represent virtual reality on Internet easier. Development of 3D graphic is connected with Silicon Graphic Corporation. VRML 2.0 is the file format for describing interactive 3D scenes and objects. It can be used in collaboration with www, can be used for 3D complex representations creating of scenes, products or VR applications VRML 2.0 enables represent static and animated objects too. Interesting application of VRML is in area of manufacturing systems presentation.
Keywords: Virtual reality, virtual reality modelling language, design of workplaces, technological workplaces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186069 Characteristics of Different Solar PV Modules under Partial Shading
Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan
Abstract:
Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.
Keywords: Partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733368 Practical Simulation Model of Floating-Gate MOS Transistor in Sub 100nm Technologies
Authors: Zina Saheb, Ezz El-Masry
Abstract:
As the Silicon oxide scaled down in MOSFET technology to few nanometers, gate Direct Tunneling (DT) in Floating gate (FGMOSFET) devices has become a major concern for analog designers. FGMOSFET has been used in many low-voltage and low-power applications, however, there is no accurate model that account for DT gate leakage in nano-scale. This paper studied and analyzed different simulation models for FGMOSFET using TSMC 90-nm technology. The simulation results for FGMOSFET cascade current mirror shows the impact of DT on circuit performance in terms of current and voltage without the need for fabrication. This works shows the significance of using an accurate model for FGMOSFET in nan-scale technologies.Keywords: CMOS transistor, direct-tunneling current, floatinggate, gate-leakage current, simulation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 299067 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test
Authors: Harald Rojacz, Markus Varga, Horst Winkelmann
Abstract:
Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200266 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material
Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike
Abstract:
Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.
Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121765 Characterization of Carbon Based Nanometer Scale Coil Growth
Authors: C. C. Su, S. H. Chang
Abstract:
The carbon based coils with the nanometer scale have the 3 dimension helix geometry. We synthesized the carbon nano-coils by the use of chemical vapor deposition technique with iron and tin as the catalysts. The fabricated coils have the external diameter of ranging few hundred nm to few thousand nm. The Scanning Electro-Microscope (SEM) and Tunneling Electro-Microscope has shown detail images of the coil-s structure. The fabrication of the carbon nano-coils can be grown on the metal and non-metal substrates, such as the stainless steel and silicon substrates. Besides growth on the flat substrate; they also can be grown on the stainless steel wires. After the synthesis of the coils, the mechanical and electro-mechanical property is measured. The experimental results were reported.Keywords: Carbon nanocoils, chemical vapor deposition, nano-materials
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140164 Influence of Silica Fume on Ultrahigh Performance Concrete
Authors: Vitoldas Vaitkevičius, Evaldas Šerelis
Abstract:
Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods.
Keywords: Compressive strength, silica fume, ultrahigh performance concrete, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 460763 Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology
Authors: L. Novakova-Marcincinova, J. Novak-Marcincin
Abstract:
Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Modeling (FDM) rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.Keywords: Rapid prototyping, materials, testing of materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443462 A Design of Anisotropic Wet Etching System to Reduce Hillocks on Etched Surface of Silicon Substrate
Authors: Alonggot Limcharoen Kaeochotchuangkul, Pathomporn Sawatchai
Abstract:
This research aims to design and build a wet etching system, which is suitable for anisotropic wet etching, in order to reduce etching time, to reduce hillocks on the etched surface (to reduce roughness), and to create a 45-degree wall angle (micro-mirror). This study would start by designing a wet etching system. There are four main components in this system: an ultrasonic cleaning, a condenser, a motor and a substrate holder. After that, an ultrasonic machine was modified by applying a condenser to maintain the consistency of the solution concentration during the etching process and installing a motor for improving the roughness. This effect on the etch rate and the roughness showed that the etch rate increased and the roughness was reduced.
Keywords: Anisotropic wet etching, wet etching system, Hillocks, ultrasonic cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69561 Low Power CNFET SRAM Design
Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor
Abstract:
CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.
Keywords: SRAM cell, CNFET, low power, HSPICE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270360 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS Process sensor, Process, Voltage and Temperature (PVT) sensor, threshold extractor circuit, Vth extractor circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75459 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications
Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole
Abstract:
Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free-radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.
Keywords: Polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), Polymeric material, Atomic Force Microscopy, roughness, carboxylic functional groups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212558 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals
Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman
Abstract:
Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189857 Effect of Gamma Irradiation on Structural and Optical Properties of ZnO/Mesoporous Silica Nanocomposite
Authors: K. Sowri Babu, P. Srinath, N. Rajeswara Rao, K. Venugopal Reddy
Abstract:
The effect of gamma ray irradiation on morphology and optical properties of ZnO/Mesoporous silica (MPS) nanocomposite was studied. The ZnO/MPS nanocomposite was irradiated with gamma rays of doses 30, 60, and 90 kGy and dose-rate of irradiation was 0.15 kGy/hour. Irradiated samples are characterized with FE-SEM, FT-IR, UV-vis, and Photoluminescence (PL) spectrometers. SEM pictures showed that morphology changed from spherical to flake like morphology. UV-vis analysis showed that the band gap increased with increase of gamma ray irradiation dose. This enhancement of the band gap is assigned to the depletion of oxygen vacancies with irradiation. The intensity of PL peak decreased gradually with increase of gamma ray irradiation dose. The decrease in PL intensity is attributed to the decrease of oxygen vacancies at the interface due to poor interface and improper passivation between ZnO/MPS.
Keywords: ZnO nanoparticles, photoluminescence, porous silicon, nanocomposites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114856 Signal-to-Noise Ratio Improvement of EMCCD Cameras
Authors: Wen W. Zhang, Qian Chen, Bei B. Zhou, Wei J. He
Abstract:
Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.Keywords: EMCCD, SNR improvement, pixel binning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287355 Multi-Level Pulse Width Modulation to Boost the Power Efficiency of Switching Amplifiers for Analog Signals with Very High Crest Factor
Authors: Jan Doutreloigne
Abstract:
The main goal of this paper is to develop a switching amplifier with optimized power efficiency for analog signals with a very high crest factor such as audio or DSL signals. Theoretical calculations show that a switching amplifier architecture based on multi-level pulse width modulation outperforms all other types of linear or switching amplifiers in that respect. Simulations on a 2 W multi-level switching audio amplifier, designed in a 50 V 0.35 mm IC technology, confirm its superior performance in terms of power efficiency. A real silicon implementation of this audio amplifier design is currently underway to provide experimental validation.
Keywords: Audio amplifier, multi-level switching amplifier, power efficiency, pulse width modulation, PWM, self-oscillating amplifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86654 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264653 Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles
Authors: G. E. Gandomkar, E. Bekhradinassab, S. Sabbaghi, M. M. Zerafat
Abstract:
The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%.Keywords: Demulsifier, dehydration, silicon dioxide, nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179852 Development of Quasi-Two-Dimensional Nb2O5 for Functional Electrodes of Advanced Electrochemical Systems
Authors: S. Zhuiykov, E. Kats
Abstract:
In recent times there has been a growing interest in the development of quasi-two-dimensional niobium pentoxide (Nb2O5) as a semiconductor for the potential electronic applications such as capacitors, filtration, dye-sensitised solar cells and gas sensing platforms. Therefore once the purpose is established, Nb2O5 can be prepared in a number of nano- and sub-micron-structural morphologies that include rods, wires, belts and tubes. In this study films of Nb2O5 were prepared on gold plated silicon substrate using spin-coating technique and subsequently by mechanical exfoliation. The reason this method was employed was to achieve layers of less than 15nm in thickness. The sintering temperature of the specimen was 800oC. The morphology and structural characteristics of the films were analyzed by Atomic Force Microscopy (AFM), Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS).Keywords: Mechanical exfoliation, niobium pentoxide, quazitwo- dimensional, semiconductor, sol-gel, spin-coating, two dimensional semiconductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239551 High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures
Authors: Ramin Yousefi, Muhamad. Rasat. Muhamad
Abstract:
We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.Keywords: ZnO nano and microstructures, Photoluminescence, Raman, Rectifying behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191950 Design of Reliable and Low Cost Substrate Heater for Thin Film Deposition
Authors: Ali Eltayeb Muhsin, Mohamed Elhadi Elsari
Abstract:
The substrate heater designed for this investigation is a front side substrate heating system. It consists of 10 conventional tungsten halogen lamps and an aluminum reflector, total input electrical power of 5 kW. The substrate is heated by means of a radiation from conventional tungsten halogen lamps directed to the substrate through a glass window. This design allows easy replacement of the lamps and maintenance of the system. Within 2 to 6 minutes the substrate temperature reaches 500 to 830 C by varying the vertical distance between the glass window and the substrate holder. Moreover, the substrate temperature can be easily controlled by controlling the input power to the system. This design gives excellent opportunity to deposit many deferent films at deferent temperatures in the same deposition time. This substrate heater was successfully used for Chemical Vapor Deposition (CVD) of many thin films, such as Silicon, iron, etc.
Keywords: CVD, Halogen Lamp, Substrate Heater, Thin Films.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273749 A Generic and Extensible Spidergon NoC
Authors: Abdelkrim Zitouni, Mounir Zid, Sami Badrouchi, Rached Tourki
Abstract:
The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.
Keywords: Dynamic arbiter, Generic router, Spidergon NoC, SoC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157048 Spark Breakdown Voltage and Surface Degradation of Multiwalled Carbon Nanotube Electrode Surfaces
Authors: M. G. Rostedt, M. J. Hall, L. Shi, R. D. Matthews
Abstract:
Silicon substrates coated with multiwalled carbon nanotubes (MWCNTs) were experimentally investigated to determine spark breakdown voltages relative to uncoated surfaces, the degree of surface degradation associated with the spark discharge, and techniques to minimize the surface degradation. The results may be applicable to instruments or processes that use MWCNT as a means of increasing local electric field strength and where spark breakdown is a possibility that might affect the devices’ performance or longevity. MWCNTs were shown to reduce the breakdown voltage of a 1mm gap in air by 30-50%. The relative decrease in breakdown voltage was maintained over gap distances of 0.5 to 2mm and gauge pressures of 0 to 4 bar. Degradation of the MWCNT coated surfaces was observed. Several techniques to improve durability were investigated. These included: chromium and gold-palladium coatings, tube annealing, and embedding clusters of MWCNT in a ceramic matrix.
Keywords: Ionization sensor, spark, nanotubes, electrode, breakdown.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242447 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276846 Influence of PLA Film Packaging on the Shelf Life of Soft Cheese Kleo
Authors: Lija Dukalska, Sandra Muizniece-Brasava, Irisa Murniece, Ilona Dabina-Bicka, Emils Kozlinskis, Svetlana Sarvi
Abstract:
Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Soft cheese Kleo produced in Latvia was packed in a biodegradable PLA without barrierproperties and VC999 BioPack lidding film PLA, coated with a barrier of pure silicon oxide (SiOx) and in combination with modified atmosphere (MAP) the influence on the shelf life was investigated and compared with some conventional (OPP, PE/PA, PE/OPA and Multibarrier 60) polymer film impact. Modified atmosphere consisted of carbon dioxide CO2 (E 290) 30% and nitrogen N2 (E 941) 70%. The analyzable samples were stored at the temperature of +4.0±0.5 °C up to 32 days- and analyzed before packaging and in the 0, 5th, 11th, 15th, 18th, 22nd, 25th, 29th and 32nd day of storage. The shelf life was extended along to 32 days, good outside appearance and lactic acid aroma was observed.Keywords: Soft cheese, modified atmosphere, conventional andbiodegradable PLA film, shelf life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 269045 SCR-Stacking Structure with High Holding Voltage for I/O and Power Clamp
Authors: Hyun-Young Kim, Chung-Kwang Lee, Han-Hee Cho, Sang-Woon Cho, Yong-Seo Koo
Abstract:
In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.Keywords: ESD, SCR, holding voltage, stack, power clamp.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206144 Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment
Authors: Ehsan Yazdanpanah Moghadam, Muthukumaran Packirisamy
Abstract:
In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 µl/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 µl/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform.Keywords: Microfluidic, biosensor, MEMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88443 Impact of Machining Parameters on the Surface Roughness of Machined PU Block
Authors: Louis Denis Kevin Catherine, Raja Aziz Raja Ma’arof, Azrina Arshad, Sangeeth Suresh
Abstract:
Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. Polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate on the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition the stepover and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block.
Keywords: Polyurethane (PU), design of experiment (DOE), scanning electron microscope (SEM), surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609