Search results for: Halogen Lamp
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31

Search results for: Halogen Lamp

31 Design of Reliable and Low Cost Substrate Heater for Thin Film Deposition

Authors: Ali Eltayeb Muhsin, Mohamed Elhadi Elsari

Abstract:

The substrate heater designed for this investigation is a front side substrate heating system. It consists of 10 conventional tungsten halogen lamps and an aluminum reflector, total input electrical power of 5 kW. The substrate is heated by means of a radiation from conventional tungsten halogen lamps directed to the substrate through a glass window. This design allows easy replacement of the lamps and maintenance of the system. Within 2 to 6 minutes the substrate temperature reaches 500 to 830 C by varying the vertical distance between the glass window and the substrate holder. Moreover, the substrate temperature can be easily controlled by controlling the input power to the system. This design gives excellent opportunity to deposit many deferent films at deferent temperatures in the same deposition time. This substrate heater was successfully used for Chemical Vapor Deposition (CVD) of many thin films, such as Silicon, iron, etc.

Keywords: CVD, Halogen Lamp, Substrate Heater, Thin Films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
30 Infrared Lamp Array Simulation Technology Used during Satellite Thermal Testing

Authors: Wang Jing, Liu Shouwen, Pei Yifei

Abstract:

A satellite is being integrated and tested by BISEE (Beijing Institute of Spacecraft Environment Engineering). This paper describes the infrared lamp array simulation technology used for satellite thermal balance and thermal vacuum test. These tests were performed in KM6 space environmental simulator in Beijing, China. New software and hardware developed by BISEE, along with enhanced heat flux uniformity, provided for well accomplished thermal balance and thermal vacuum tests. The flux uniformity of lamp array was satisfied with test requirement. Monitored background radiometer offered reliable heat flux measurements with remarkable repeatability. Simulation software supplied accurate thermal flux distribution predictions.

Keywords: Satellite, Thermal test, Infrared lamp array, Heatflux

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
29 The Hybrid Dimming Control System for Solar Charging Robot

Authors: A. Won-Yong Chae, B. Hyung-Nam Kim, C. Kyoung-Jun Lee, D. Hee-Je Kim

Abstract:

The renewable energy has been attracting attention as a new alternative energy due to the problem of environmental pollution and resource depletion. In particular, daylighting and PV system are regarded as the solutions. In this paper, the hybrid dimming control system supplied by solar cell and daylighting system was designed. Daylighting system is main source and PV system is spare source. PV system operates the LED lamp which supports daylighting system because daylighting system is unstable due to the variation of irradiance. In addition, PV system has a role charging batteries. Battery charging has a benefit that PV system operate LED lamp in the bad weather. However, LED lamp always can`t turn on that-s why dimming control system was designed. In particular, the solar charging robot was designed to check the interior irradiance intensity. These systems and the application of the solar charging robot are expected to contribute developing alternative energy in the near future.

Keywords: Daylighting system, PV system, LED lamp, Suntracking robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
28 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.

Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
27 Experimental Analysis on Electrical and Photometric Performances of Commercially Available Integrated Compact Fluorescent Lamp

Authors: Hu-Hsiao Hsu, Po-Ren Chung, Ming-Chin Ho, Chieh-Feng Tsai, Che-Ming Chiang, Shin-Ku Lee

Abstract:

Lighting upgrades involve relatively lower costs which allow the benefits to be spread more widely than is possible with any other energy efficiency measure. In order to popularize the adoption of CFL in Taiwan, the authority proposes to implement a new energy efficient lamp comparative label system. The current study was accordingly undertaken to investigate the factors affecting the performance and the deviation of actual and labeled performance of commercially available integrated CFLs. In this paper, standard test methods to determine the electrical and photometric performances of CFL were developed based on CIE 84-1989 and CIE 60901-1987, then 55 selected CFLs from market were tested. The results show that with higher color temperature of CFLs lower efficacy are achieved. It was noticed that the most packaging of CFL often lack the information of Color Rendering Index. Also, there was no correlation between price and performance of the CFLs was indicated in this work. The results of this paper might help consumers to make more informed CFL-purchasing decisions.

Keywords: Compact fluorescent lamp (CFL), Efficacy, Color Rendering Index (CRI), Energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
26 Energy Efficiency Testing of Fluorescent and WOLED (White Organic LED)

Authors: Hari Maghfiroh, Harry Prabowo

Abstract:

WOLED is widely used as lighting for high efficacy and little power consumption. In this research, power factor testing between WOLED and fluorescent lamp to see which one is more efficient in consuming energy. Since both lamps use semiconductor components, so calculation of the power factor need to consider the effects of harmonics. Harmonic make bigger losses. The study is conducted by comparing the value of the power factor regardless of harmonics (DPF) and also by included the harmonics (TPF). The average value of DPF of fluorescent is 0.953 while WOLED is 0.972. The average value of TPF of fluorescent is 0.717 whereas WOLED is 0.933. So from the review of power factor WOLED is more energy efficient than fluorescent lamp.

Keywords: Fluorescent, harmonic, power factor, WOLED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
25 Ambient Notifications and the Interruption Effect

Authors: Trapond Hiransalee

Abstract:

The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.

Keywords: HCI, Interaction, Interaction design, Usability testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
24 An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming

Authors: V.Sekar, T.G.Palanivelu, B.Revathi

Abstract:

Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.

Keywords: Ballast, Electromagnetic interference (EMI), EMImitigation, Evolutionary programming (EP), Fluorescent lamp, Frequency Modulation (FM), Modulation index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
23 Basic Research for Electroretinogram Moving the Center of the Multifocal Hexagonal Stimulus Array

Authors: Naoto Suzuki

Abstract:

Many ophthalmologists can examine declines in visual sensitivity at arbitrary points on the retina using a precise perimetry device with a fundus camera function. However, the retinal layer causing the decline in visual sensitivity cannot be identified by this method. We studied an electroretinogram (ERG) function that can move the center of the multifocal hexagonal stimulus array in order to investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy, and multiple evanescent white dot syndrome. An electroretinographic optical system, specifically a perimetric optical system, was added to an experimental device carrying the same optical system as a fundus camera. We also added an infrared camera, a cold mirror, a halogen lamp, and a monitor. The software was generated to show the multifocal hexagonal stimulus array on the monitor using C++Builder XE8 and to move the center of the array up and down as well as back and forth. We used a multifunction I/O device and its design platform LabVIEW for data retrieval. The plate electrodes were used to measure electrodermal activities around the eyes. We used a multifocal hexagonal stimulus array with 37 elements in the software. The center of the multifocal hexagonal stimulus array could be adjusted to the same position as the examination target of the precise perimetry. We successfully added the moving ERG function to the experimental ophthalmologic device.

Keywords: Moving ERG, precise perimetry, retinal layers, visual sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
22 Experimental Investigation the Effectiveness of Using Heat Pipe on the Spacecraft Mockup Panel

Authors: M. Abdou, M. K. Khalil

Abstract:

The heat pipe is a thermal device which allows efficient transport of thermal energy. The experimental work of this research was split into two phases; phase 1 is the development of the facilities, material and test rig preparation. Phase 2 is the actual experiments and measurements of the thermal control mockup inside the modified vacuum chamber (MVC). Due to limited funds, the development on the thermal control subsystem was delayed and the experimental facilities such as suitable thermal vacuum chamber with space standard specifications were not available from the beginning of the research and had to be procured over a period of time. In all, these delays extended the project by one and a half year. Thermal control subsystem needs a special facility and equipment to be tested. The available vacuum chamber is not suitable for the thermal tests. Consequently, the modification of the chamber was a must. A vacuum chamber has been modified to be used as a Thermal Vaccum Chamber (TVC). A MVC is a vacuum chamber modified by using a stainless mirror box with perfect reflectability and the infrared lamp connected with the voltage regulator to vary the lamp intensity as it will be illustrated through the paper.

Keywords: Heat pipe, thermal control, thermal vacuum chamber, satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
21 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection

Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung

Abstract:

This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.

Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
20 Luminescent Si Nanocrystals Synthesized by Si Ion Implantation and Reactive Pulsed Laser Deposition: The Effects of RTA, Excimer-UV and E-Beam Irradiation

Authors: T. S. Iwayama, T. Hama

Abstract:

Si ion implantation was widely used to synthesize specimens of SiO2 containing supersaturated Si and subsequent high temperature annealing induces the formation of embedded luminescent Si nanocrystals. In this work, the potentialities of excimer UV-light (172 nm, 7.2 eV) irradiation and rapid thermal annealing (RTA) to enhance the photoluminescence and to achieve low temperature formation of Si nanocrystals have been investigated. The Si ions were introduced at acceleration energy of 180 keV to fluence of 7.5 x 1016 ions/cm2. The implanted samples were subsequently irradiated with an excimer-UV lamp. After the process, the samples were rapidly thermal annealed before furnace annealing (FA). Photoluminescence spectra were measured at various stages at the process. We found that the luminescence intensity is strongly enhanced with excimer-UV irradiation and RTA. Moreover, effective visible photoluminescence is found to be observed even after FA at 900 oC, only for specimens treated with excimer-UV lamp and RTA. We also prepared specimens of Si nanocrystals embedded in a SiO2 by reactive pulsed laser deposition (PLD) in an oxygen atmosphere. We will make clear the similarities and differences with the way of preparation.

Keywords: Ion implantation, photoluminescence, pulsed laser deposition, rapid thermal anneal, Si nanocrystals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
19 Development of Moving Multifocal Electroretinogram with a Precise Perimetry Apparatus

Authors: Naoto Suzuki

Abstract:

A decline in visual sensitivity at arbitrary points on the retina can be measured using a precise perimetry apparatus along with a fundus camera. However, the retinal layer associated with this decline cannot be identified accurately with current medical technology. To investigate cryptogenic diseases, such as macular dystrophy, acute zonal occult outer retinopathy (AZOOR), and multiple evanescent white dot syndrome (MEWDS), we evaluated an electroretinogram (ERG) function that allows moving the center of the multifocal hexagonal stimulus array to a chosen position. Macular dystrophy is a generalized term used for a variety of functional disorders of the macula lutea, and the ERG shows a diminution of the b-wave in these disorders. AZOOR causes an acute functional disorder to an outer layer of the retina, and the ERG shows a-wave and b-wave amplitude reduction as well as delayed 30 Hz flicker responses. MEWDS causes acute visual loss and the ERG shows a decrease in a-wave amplitude. We combined an electroretinographic optical system and a perimetric optical system into an experimental apparatus that has the same optical system as that of a fundus camera. We also deployed an EO-50231 Edmund infrared camera, a 45-degree cold mirror, a lens with a 25-mm focal length, a halogen lamp, and an 8-inch monitor. Then, we also employed a differential amplifier with gain 10, a 50 Hz notch filter, a high-pass filter with a 21.2 Hz cut-off frequency, and two non-inverting amplifiers with gains 1001 and 11. In addition, we used a USB-6216 National Instruments I/O device, a NE-113A Nihon Kohden plate electrode, a SCB-68A shielded connector block, and LabVIEW 2017 software for data retrieval. The software was used to generate the multifocal hexagonal stimulus array on the computer monitor with C++Builder 10.2 and to move the center of the array toward the left and right and up and down. Cone and bright flash ERG results were observed using the moving ERG function. The a-wave, b-wave, c-wave, and the photopic negative response were identified with cone ERG. The moving ERG function allowed the identification of the retinal layer causing visual alterations.

Keywords: Moving ERG, multifocal ERG, precise perimetry, retinal layers, visual sensitivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
18 Optical Verification of an Ophthalmological Examination Apparatus Employing the Electroretinogram Function on Fundus-Related Perimetry

Authors: Naoto Suzuki

Abstract:

Japanese are affected by the most common causes of eyesight loss such as glaucoma, diabetic retinopathy, pigmentary retinal degeneration, and age-related macular degeneration. We developed an ophthalmological examination apparatus with a fundus camera, precisely fundus-related perimetry (microperimetry), and electroretinogram (ERG) functions to diagnose a variety of diseases that cause eyesight loss. The experimental apparatus was constructed with the same optical system as a fundus camera. The microperimetry optical system was calculated and added to the experimental apparatus using the German company Optenso's optical engineering software (OpTaliX-LT 10.8). We also added an Edmund infrared camera (EO-0413), a lens with a 25 mm focal length, a 45° cold mirror, a 12 V/50 W halogen lamp, and an 8-inch monitor. We made the artificial eye of a plane-convex lens, a black spacer, and a hemispherical cup. The hemispherical cup had a small section of the paper at the bottom. The artificial eye was photographed five times using the experimental apparatus. The software was created to display the examination target on the monitor and save examination data using C++Builder 10.2. The retinal fundus was displayed on the monitor at a length and width of 1 mm and a resolution of 70.4 ± 4.1 and 74.7 ± 6.8 pixels, respectively. The microperimetry and ERG functions were successfully added to the experimental ophthalmological apparatus. A moving machine was developed to measure the artificial eye's movement. The artificial eye's rear part was painted black and white in the central area. It was rotated 10 degrees from one side to the other. The movement was captured five times as motion videos. Three static images were extracted from one of the motion videos captured. The images display the artificial eye facing the center, right, and left directions. The three images were processed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2, including trimming, binarization, making a window, deleting peripheral area, and morphological operations. To calculate the artificial eye's fundus center, we added a gravity method to the program to calculate the gravity position of connected components. From the three images, the image processing could calculate the center position.

Keywords: Ophthalmological examination apparatus, microperimetry, electroretinogram, eye movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
17 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods

Authors: W. Swiderski

Abstract:

Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.

Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
16 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: Electric power consumption, LED color, LED lighting, plant factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
15 Study of the Effects of Ceramic Nano-Pigments in Cement Mortar Corrosion Caused by Chlorine Ions

Authors: R. Moradpour, S.B. Ahmadi, T. Parhizkar, M. Ghodsian, E. Taheri-Nassaj

Abstract:

Superfine pigments that consist of natural and artificial pigments and are made of mineral soil with special characteristics are used in cementitious materials for various purposes. These pigments can decrease the amount of cement needed without loss of performance and strength and also change the monotonous and turbid colours of concrete into various attractive and light colours. In this study, the mechanical strength and resistance against chloride and halogen attacks of cement mortars containing ceramic nano-pigments in an affected environment are studied. This research suggests utilisation of ceramic nano-pigments between 50 and 1000 nm, obtaining full-depth coloured concrete, preventing chlorine penetration in the concrete up to a certain depth, and controlling corrosion in steel rebar with the Potentiostat (EG&G) apparatus.

Keywords: Nano-structures, Corrosion, Mechanical properties, Nano-pigments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
14 Case Studies in Three Domains of Learning: Cognitive, Affective, Psychomotor

Authors: Zeinabsadat Haghshenas

Abstract:

Bloom’s Taxonomy has been changed during the years. The idea of this writing is about the revision that has happened in both facts and terms. It also contains case studies of using cognitive Bloom’s taxonomy in teaching geometric solids to the secondary school students, affective objectives in a creative workshop for adults and psychomotor objectives in fixing a malfunctioned refrigerator lamp. There is also pointed to the important role of classification objectives in adult education as a way to prevent memory loss.

Keywords: Adult education, affective domain, cognitive domain, memory loss, psychomotor domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7073
13 Surface Morphology and Formation of Nanostructured Porous GaN by UV-assisted Electrochemical Etching

Authors: L. S. Chuah, Z. Hassan, C. W. Chin, H. Abu Hassan

Abstract:

This article reports on the studies of porous GaN prepared by ultra-violet (UV) assisted electrochemical etching in a solution of 4:1:1 HF: CH3OH:H2O2 under illumination of an UV lamp with 500 W power for 10, 25 and 35 minutes. The optical properties of porous GaN sample were compared to the corresponding as grown GaN. Porosity induced photoluminescence (PL) intensity enhancement was found in these samples. The resulting porous GaN displays blue shifted PL spectra compared to the as-grown GaN. Appearance of the blue shifted emission is correlated with the development of highly anisotropic structures in the morphology. An estimate of the size of the GaN nanostructure can be obtained with the help of a quantized state effective mass theory.

Keywords: Photoluminescence, porous GaN, electrochemical etching, Si, RF-MBE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
12 Fabrication of Cesium Iodide Columns by Rapid Heating Method

Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang

Abstract:

This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.

Keywords: Cesium iodide, high efficiency, vapor, rapid heating, crystal column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
11 Re-interpreting Ruskin with Respect to the Wall

Authors: Anjali Sadanand, R. V. Nagarajan

Abstract:

Architecture morphs with advances in technology and the roof, wall, and floor as basic elements of a building, follow in redefining themselves over time. Their contribution is bound by time and held by design principles that deal with function, sturdiness, and beauty. Architecture engages with people to give joy through its form, material, design structure, and spatial qualities. This paper attempts to re-interpret John Ruskin’s “Seven lamps of Architecture” in the context of the architecture of the modern and present period. The paper focuses on the “wall” as an element of study in this context. Four of Ruskin’s seven lamps will be discussed, namely beauty, truth, life, and memory, through examples of architecture ranging from modernism to contemporary architecture of today. The study will focus on the relevance of Ruskin’s principles to the “wall” in specific, in buildings of different materials and over a range of typologies from all parts of the world. Two examples will be analyzed for each lamp. It will be shown that in each case, there is relevance to the significance of Ruskin’s lamps in modern and contemporary architecture. Nature to which Ruskin alludes to for his lamp of “beauty” is found in the different expressions of interpretation used by Corbusier in his Villa Stein façade based on proportion found in nature and in the direct expression of Toyo Ito in his translation of an understanding of the structure of trees into his façade design of the showroom for a Japanese bag boutique. “Truth” is shown in Mies van der Rohe’s Crown Hall building with its clarity of material and structure and Studio Mumbai’s Palmyra House, which celebrates the use of natural materials and local craftsmanship. “Life” is reviewed with a sustainable house in Kerala by Ashrams Ravi and Alvar Aalto’s summer house, which illustrate walls as repositories of intellectual thought and craft. “Memory” is discussed with Charles Correa’s Jawahar Kala Kendra and Venturi’s Vana Venturi house and discloses facades as text in the context of its materiality and iconography. Beauty is reviewed in Villa Stein and Toyo Ito’s Branded Retail building in Tokyo. The paper thus concludes that Ruskin’s Lamps can be interpreted in today’s context and add richness to meaning to the understanding of architecture.

Keywords: Beauty, design, façade, modernism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
10 Intelligent Off-Grid Photovoltaic Supply Systems

Authors: Prashant Kumar Soori, Parthasarathy L., Masami Okano, Awet Mana

Abstract:

Off-grid Photovoltaic (PV) systems are empowering technology in underdeveloped countries like Ethiopia where many people live far away from the modern world. Where there is relatively low energy consumption, providing energy from grid systems is not commercially cost-effective. As a result, significant people groups worldwide stay without access to electricity. One remote village in northern Ethiopia was selected by the United Nations for a pilot project to improve its living conditions. As part of this comprehensive project, an intelligent charge controller circuit for Off-grid PV systems was designed for the clinic in that village. In this paper, design aspects of an intelligent charge controller unit and its load driver circuits are discussed for an efficient utilization of PVbased supply systems.

Keywords: Compact Fluorescent Lamp (CFL), FluorescentLamp, Intelligent Charge Controller Unit (ICCU), Light EmittingDiode (LED), Photovoltaic (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
9 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
8 Blinking Characteristics and Corneal Staining in Different Soft Lens Materials

Authors: Bashirah Ishak, Jacyln JiaYing Thye, Bariah Mohd Ali, Norhani Mohidin

Abstract:

Background Contact lens (CL) wear can cause changes in blinking and corneal staining. Aims and Objectives To determine the effects of CL materials (HEMA and SiHy) on spontaneous blink rate, blinking patterns and corneal staining after 2 months of wear. Methods Ninety subjects in 3 groups (control, HEMA and SiHy) were assessed at baseline and 2-months. Blink rate was recorded using a video camera. Blinking patterns were assessed with digital camera and slit lamp biomicroscope. Corneal staining was graded using IER grading scale Results There were no significant differences in all parameters at baseline. At 2 months, CL wearers showed significant increment in average blink rate (F1.626, 47.141 = 7.250, p = 0.003; F2,58 = 6.240, p = 0.004) and corneal staining (χ2 2, n=30 = 31.921, p < 0.001; χ2 2, n=30 = 26.909, p < 0.001). Conclusion Blinking characteristics and corneal staining were not influence by soft CL materials.

Keywords: Spontaneous blinking, cornea staining, grading, soft contact lenses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
7 Utilization of Kitchen Waste inside Green House Chamber: A Community Level Biogas Programme

Authors: Ravi P. Agrahari

Abstract:

The present study was undertaken with the objective of evaluating kitchen waste as an alternative organic material for biogas production in community level biogas plant. The field study was carried out for one month (January 19, 2012– February 17, 2012) at Centre for Energy Studies, IIT Delhi, New Delhi, India.

This study involves the uses of greenhouse canopy to increase the temperature for the production of biogas in winter period. In continuation, a semi-continuous study was conducted for one month with the retention time of 30 days under batch system. The gas generated from the biogas plant was utilized for cooking (burner) and lighting (lamp) purposes. Gas productions in the winter season registered lower than other months. It can be concluded that the solar greenhouse assisted biogas plant can be efficiently adopted in colder region or in winter season because temperature plays a major role in biogas production. 

Keywords: Biogas, Green house chamber, organic material, solar intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
6 Vibration and Operation Technical Consideration before Field Balance of Gas Turbine Utilities (In Iran Power Plants SIEMENS V94.2 Gas Turbines)

Authors: Omid A. Zargar

Abstract:

One of the most challenging times in operation of big industrial plant or utilities is the time that alert lamp of Bently Nevada connection in main board substation turn on and show the alert condition of machine. All of the maintenance groups usually make a lot of discussion with operation and together rather this alert signal is real or fake. This will be more challenging when condition monitoring vibrationdata shows 1X(X=current rotor frequency) in fast Fourier transform(FFT) and vibration phase trends show 90 degree shift between two non-contact probedirections with overall high radial amplitude amounts. In such situations, CM (condition monitoring) groups usually suspicious about unbalance in rotor. In this paper, four critical case histories related to SIEMENS V94.2 Gas Turbines in Iran power industry discussed in details. Furthermore, probe looseness and fake (unreal) trip in gas turbine power plants discussed. In addition, critical operation decision in alert condition in power plants discussed in details.

Keywords: Gas turbine, field balance, turbine compressors, balancing tools, balancing data collectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4063
5 Energy Recovery Soft Switching Improved Efficiency Half Bridge Inverter for Electronic Ballast Applications

Authors: A. Yazdanpanah Goharrizi

Abstract:

An improved topology of a voltage-fed quasi-resonant soft switching LCrCdc series-parallel half bridge inverter with a constant-frequency for electronic ballast applications is proposed in this paper. This new topology introduces a low-cost solution to reduce switching losses and circuit rating to achieve high-efficiency ballast. Switching losses effect on ballast efficiency is discussed through experimental point of view. In this discussion, an improved topology in which accomplishes soft switching operation over a wide power regulation range is proposed. The proposed structure uses reverse recovery diode to provide better operation for the ballast system. A symmetrical pulse wide modulation (PWM) control scheme is implemented to regulate a wide range of out-put power. Simulation results are kindly verified with the experimental measurements obtained by ballast-lamp laboratory prototype. Different load conditions are provided in order to clarify the performance of the proposed converter.

Keywords: Electronic ballast, Pulse wide modulation (PWM) Reverse recovery diode, Soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
4 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din

Abstract:

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

Keywords: Photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
3 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas

Authors: S.F.S. Draman, R. Daik, A. Musa

Abstract:

Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.

Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
2 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites

Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li

Abstract:

Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.

Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131