High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33104
High Optical Properties and Rectifying Behavior of ZnO (Nano and Microstructures)/Si Heterostructures

Authors: Ramin Yousefi, Muhamad. Rasat. Muhamad

Abstract:

We investigated a modified thermal evaporation method in the growth process of ZnO nanowires. ZnO nanowires were fabricated on p-type silicon substrates without using a metal catalyst. A simple horizontal double-tube system along with chemical vapor diffusion of the precursor was used to grow the ZnO nanowires. The substrates were placed in different temperature zones, and ZnO nanowires with different diameters were obtained for the different substrate temperatures. In addition to the nanowires, ZnO microdiscs with different diameters were obtained on another substrate, which was placed at a lower temperature than the other substrates. The optical properties and crystalline quality of the ZnO nanowires and microdiscs were characterized by room temperature photoluminescence (PL) and Raman spectrometers. The PL and Raman studies demonstrated that the ZnO nanowires and microdiscs grown using such set-up had good crystallinity with excellent optical properties. Rectifying behavior of ZnO/Si heterostructures was characterized by a simple DC circuit.

Keywords: ZnO nano and microstructures, Photoluminescence, Raman, Rectifying behavior.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081619

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919

References:


[1] M.H. Huang, S. Mao, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2002) 1897.
[2] T. Premkumar, P. Manoravi, B.K. Panigrahi, K. Baskar, Appl. Surf. Sci 255 (2009) 6819.
[3] Y. Ma, C.P. Wong, X.T. Zeng, T. Yu, Y. Zhu, Z.X. Shen, J. Phys. D: Appl. Phys. 42 (2009) 065417.
[4] D.J.Park, D.C. Kim, J.Y. Lee1, H.K. Cho, Nanotechnology 17 (2006) 5238.
[5] Y.J. Tak, Y.H. Ryu, K. Yong, Nanotechnology 16 (2005) 1712.
[6] L.C. Tien, D.P. Norton, S.J. Pearton , H.T. Wang, F. Ren, Appl. Surf. Sci 253 (2007) 4620.
[7] Y. Liu, Z. H. Kang, Z. H. Chen, I. Shafiq, J. A. Zapien, I. Bello,W. J. Zhang, S. T. Lee, Crystal Growth & Design, 9 (2009) 3223.
[8] S.Y. Li, C.Y. Lee and T.Y. Tseng, J. Cryst.Growth 247 (2003) 357.
[9] P.X. Gao, Y. Ding and Z.L. Wang, Nano Letters 3 (2003) 1315.
[10] S.C. Lyu, Y. Zhang, C.J. Lee, H. Ruh and H.J. Lee, Chem. Mater. 15 (2003) 3294.
[11] E. Lai, W. Kim, P. Yang, Nano Res 1 (2008) 123
[12] L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, J. Cryst.Growth 284 (2005) 459.
[13] J.H. He, J.H. Hsu, C.W. Wang, H.N. Lin, L.J. Chen, Z.L. Wang, J. Phys. Chem. B, 110 (2006), 50
[14] C. Ye, X. Fang, Y. Hao, X. Teng and L. Zhang, J. Phys. Chem. B 109 (2005) 19758.
[15] Z.L. Wang, J. Phys.: Condens. Matter 16 (2004) R829.
[16] C. Kittel, Thermal Physics; First ed; John Wily & Sons, Inc. New York 1969.
[17] C. Kittel, Introduction to Solid State Physics; 6th ed; Wiley, New York 1986.
[18] S.L. Mensah, V.K. Kayastha, Y.K. Yap, J. Phys. Chem. C 111 (2007) 16092.
[19] J. Li, Q. Zhang, H. Peng, H.O. Everitt, L. Qin, J. Liu, J. Phys. Chem. C 113 (2009) 3950.
[20] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt and B.E. Gnade, J. Appl. Phys, 79 (1996) 7983.
[21] R. Yousefi, B. Kamaluddin, J. Alloy Compd. 479 (2009) L11.
[22] A. Umar, Y.B. Hahn, Appl. Phys. Lett. 88 (2006) 173120.
[23] A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, Y.B. Hahn, J. Cryst. Growth 282 (2005) 131-36.