Search results for: silicon carbide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 252

Search results for: silicon carbide

252 Investigation of Mesoporous Silicon Carbonization Process

Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev

Abstract:

In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: Silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
251 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon

Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov

Abstract:

A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.

Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
250 The Effect of Surface Modifiers on the Mechanical and Morphological Properties of Waste Silicon Carbide Filled High-Density Polyethylene

Authors: R. Dangtungee, A. Rattanapan, S. Siengchin

Abstract:

Waste silicon carbide (waste SiC) filled high-density polyethylene (HDPE) with and without surface modifiers were studied. Two types of surface modifiers namely; high-density polyethylene-grafted-maleic anhydride (HDPE-g-MA) and 3-aminopropyltriethoxysilane have been used in this study. The composites were produced using a two roll mill, extruder and shaped in a hydraulic compression molding machine. The mechanical properties of polymer composites such as flexural strength and modulus, impact strength, tensile strength, stiffness and hardness were investigated over a range of compositions. It was found that, flexural strength and modulus, tensile modulus and hardness increased, whereas impact strength and tensile strength decreased with the increasing in filler contents, compared to the neat HDPE. At similar filler content, the effect of both surface modifiers increased flexural modulus, impact strength, tensile strength and stiffness but reduced the flexural strength. Morphological investigation using SEM revealed that the improvement in mechanical properties was due to enhancement of the interfacial adhesion between waste SiC and HDPE.

Keywords: High-density polyethylene, HDPE-g-MA, mechanical properties, morphological properties, silicon carbide, waste silicon carbide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
249 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
248 Study of Tribological Behaviour of Al6061/Silicon Carbide/Graphite Hybrid Metal Matrix Composite Using Taguchi's Techniques

Authors: Mohamed Zakaulla, A. R. Anwar Khan

Abstract:

Al6061 alloy base matrix, reinforced with particles of silicon carbide (10 wt %) and Graphite powder (1wt%), known as hybrid composites have been fabricated by liquid metallurgy route (stir casting technique) and optimized at different parameters like applied load, sliding speed and sliding distance by taguchi method. A plan of experiment generated through taguchi technique was used to perform experiments based on L27 orthogonal array. The developed ANOVA and regression equations are used to find the optimum coefficient of friction and wear under the influence of applied load, sliding speed and sliding distance. On the basis of “smaller the best” the dry sliding wear resistance was analysed and finally confirmation tests were carried out to verify the experimental results.

Keywords: Analysis of variance, dry sliding wear, Hybrid composite, orthogonal array, Taguchi technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
247 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: Reinforcement, silicon carbide, fly ash, red mud.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
246 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.

Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
245 Tool Wear of (Ti,W,Si)N-Coated WC-Ni-Based Cemented Carbide in Cutting Hardened Steel

Authors: Tadahiro Wada, Shinichi Enoki, Hiroyuki Hanyu

Abstract:

In this study, WC-Ni-based cemented carbides having different nickel contents were used as the substrate for cutting tool materials. Hardened steel was turned by a (Ti,W,Si)N-coated WC-Ni-based cemented carbide tool, and the tool wear was experimentally investigated. The following results were obtained: (1) In the (Ti,W,Si)N-coated WC-Ni-based cemented carbide, the hardness of the coating film was not much different from the content of the binding material, Ni, and the adhesion strength increased with a decrease in Ni content. (2) There is little difference between the wear progress of the (Ti,W,Si)N-coated WC-7%Ni-based cemented carbide tool and that of the (Ti,W,Si)N-coated WC-6%Co-based cemented carbide tool. (3) The wear progress of the (Ti,W,Si)N-coated WC-Ni-based cemented carbide became slower with a decrease in Ni content.

From the above, it is has become clear that WC-Ni-based cemented carbide can be used as a substrate for cutting tool materials.

Keywords: Rare metals, turning, WC-Ni-based cemented carbide, (Ti, W, Si)N coating film, hardened steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
244 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace: Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: Metallurgical grade silicon, solar grade silicon, impurity, refining, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
243 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.

Abstract:

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
242 The Experience with SiC MOSFET and Buck Converter Snubber Design

Authors: P. Vaculik

Abstract:

The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber. 

Keywords: SiC, Si, MOSFET, IGBT, SBD, RC snubber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5592
241 The Effect of Carbon on Molybdenum in the Preparation of Microwave Induced Molybdenum Carbide

Authors: Abd. Rahim Yacob, Mohd Khairul Asyraf Amat Mustajab, Nurshaira Haifa Suhaimi

Abstract:

This study shows the effect of carbon towards molybdenum carbide alloy when exposed to Microwave. This technique is also known as Microwave Induced Alloying (MIA) for the preparation of molybdenum carbide. In this study ammonium heptamolybdate solution and carbon black powder were heterogeneously mixed and exposed to microwave irradiation for 2 minutes. The effect on amount of carbon towards the produced alloy on morphological and oxidation states changes during microwave is presented. In this experiment, it is expected carbon act as a reducing agent with the ratio 2:7 molybdenum to carbon as the optimum for the production of molybdenum carbide alloy. All the morphological transformations and changes in this experiment were followed and characterized using X-Ray Diffraction and FESEM.

Keywords: Carbon, molybdenum carbide, microwave induced alloying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
240 CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such a performance level that the integration challenge of silicon photonics with microelectronic circuits should be addressed. Since crystalline silicon can only be grown from another silicon crystal, making it impossible to deposit in this state, the optical devices are typically limited to a single layer. An alternative approach is to integrate a photonic layer above the CMOS chip using back-end CMOS fabrication process. In this paper, various materials, including silicon nitride, amorphous silicon, and polycrystalline silicon, for this purpose are addressed.

Keywords: Silicon photonics, CMOS, Integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
239 Effect of Concentration of Sodium Borohydrate on the Synthesis of Silicon Nanoparticles via Microemulsion Route

Authors: W. L. Liong, Srimala Sreekantan, Sabar D. Hutagalung

Abstract:

The effect of concentration of reduction agent of sodium borohydrate (NaBH4) on the properties of silicon nanoparticles synthesized via microemulsion route is reported. In this work, the concentration of the silicon tetrachloride (SiCl4) that served as silicon source with sodium hydroxide (NaOH) and polyethylene glycol (PEG) as stabilizer and surfactant, respectively, are keep fixed. Four samples with varied concentration of NaBH4 from 0.05 M to 0.20 M were synthesized. It was found that the lowest concentration of NaBH4 gave better formation of silicon nanoparticles.

Keywords: Microelmusion, nanoparticles, reduction, silicon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
238 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls

Authors: C. C. Lv, Y. L. Sun, D. W. Zuo

Abstract:

Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.

Keywords: Cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
237 Characterization Study of Aluminium 6061 Hybrid Composite

Authors: U. Achutha Kini, S. S. Sharma, K. Jagannath, P. R. Prabhu, Gowri Shankar M. C.

Abstract:

Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature.

Keywords: Hybrid composite, hardness test, wear test, heat treatment, pin on disc wear testing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
236 The Synergistic Effects of Using Silicon and Selenium on Fruiting of Zaghloul Date Palm (Phoenix dectylifera L.)

Authors: M. R. Gad El- Kareem, A. M. K. Abdel Aal, A. Y. Mohamed

Abstract:

During 2011 and 2012 seasons, Zaghloul date palms received four sprays of silicon (Si) at 0.05 to 0.1% and selenium (Se) at 0.01 to 0.02%. Growth, nutritional status, yield as well as physical and chemical characteristics of the fruits in response to application of silicon and selenium were investigated. Single and combined applications of silicon at 0.05 to 0.1% and selenium at 0.01 to 0.02% was very effective in enhancing the leaf area, total chlorophylls, percentages of N, P and K in the leaves, yield, bunch weight as well as physical and chemical characteristics of the fruits in relative to the check treatment. Silicon was superior to selenium in this respect. Combined application was favorable than using each alone in this connection. Treating Zaghloul date palms four times with a mixture of silicon at 0.05% + selenium at 0.01% resulted in an economical yield and producing better fruit quality.

Keywords: Date Palms, Zaghloul, Silicon, Selenium, leaf area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2997
235 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: Tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
234 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors

Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari

Abstract:

The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.

Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
233 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: A. Vilutis, V. Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against tungsten carbide-cobalt (WC-Co) hard alloy. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy Dispersive Spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: Friction, composite, carbide, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78
232 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: Induction, amorphous silica, carbon microstructure, silicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
231 Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)

Authors: A. Udayakumar, M. Rizvan Basha, M. Stalin, V.V Bhanu Prasad

Abstract:

Three dimensional non-Interlaced carbon fibre reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon interphase were fabricated using isothermal chemical vapor infiltration (ICVI) combined with polymer impregnation pyrolysis (PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to obtain silicon carbide matrix. Thermo gravimetric analysis (TGA), Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD) analysis were carried out on PSZ pyrolysed at different temperatures to understand the pyrolysis and obtaining the optimum pyrolysing condition to yield β-SiC phase. The density of the composites was 1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h with one intermediate polysilazane pre-ceramic PIP process. Mechanical properties of the composite materials were investigated under tensile, flexural, shear and impact loading. The values of tensile strength were 200 MPa at room temperature (RT) and 195 MPa at 500°C in air. The average RT flexural strength was 243 MPa. The lower flexural strength of these composites is because of the porosity. The fracture toughness obtained from single edge notched beam (SENB) technique was 39 MPa.m1/2. The work of fracture obtained from the load-displacement curve of SENB test was 22.8 kJ.m-2. The composites exhibited excellent impact resistance and the dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined from instrumented Charpy impact test. The shear strength of the composite was 93 MPa, which is significantly higher compared 2-D Cf/SiC composites. Microstructure evaluation of fracture surfaces revealed the signatures of fracture processes and showed good support for the higher toughness obtained.

Keywords: 3-D-Cf/SiC, charpy impact test, composites, dynamic fracture toughness, polysilazane, pyrocarbon, Interphase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
230 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, Che Hassan C. H., N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal matrix composites (MMCs) attract considerable attention as a result from its ability in providing a high strength, high modulus, high toughness, high impact properties, improving wear resistance and providing good corrosion resistance compared to unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been widely used in various industrial sectors such as in transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is an MMC that had been reinforced with aluminium nitrate (AlN) particle and become a new generation material use in automotive and aerospace sector. The AlN is one of the advance material that have a bright prospect in future since it has features such as lightweight, high strength, high hardness and stiffness quality. However, the high degree of ceramic particle reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density is the main problem which leads to difficulties in machining process. This paper examined the tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 (Titanium diboride) coated carbide cutting tool. The volume of the AlN reinforced particle was 10% and milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were at the cutting speed of (230, 300 and 370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The Sometech SV-35 video microscope system used to quantify of the tool wear. The result shown that tool life span increasing with the cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at 0.4mm) which constituted an optimum condition for longer tool life lasted until 123.2 mins. Meanwhile, at medium cutting speed which at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we found that tool life span lasted until 119.86 mins while at low cutting speed it lasted in 119.66 mins. High cutting speed will give the best parameter in cutting AlSi/AlN MMCs material. The result will help manufacturers in machining process of AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated cemented carbide tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
229 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel

Authors: Tadahiro Wada, Koji Iwamoto

Abstract:

In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.

Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
228 Thermoelectric Properties of Doped Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.

Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
227 An Electrically Modulatable Silicon Waveguide Grating Using an Implantation Technology

Authors: Qing Fang, Lianxi Jia, JunFeng Song, Xiaoguang Tu, Mingbin Yu, Andy Eu-jin Lim, Guo Qiang Lo

Abstract:

The first pn-type carrier-induced silicon Bragg-grating filter is demonstrated. The extinction-ratio modulations are 11.5 dB and 10 dB with reverse and forward biases, respectively. 8-Gpbs data rate is achieved with a reverse bias.

Keywords: Silicon photonics, Waveguide grating, Carrier-induced, Extinction-ratio modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
226 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators

Authors: Isao Tomita

Abstract:

The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.

Keywords: All-silicon raman laser, FTTH, GE-PON, quasi-phase-matched structure, resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
225 Nonlinear Thermal Expansion Model for SiC/Al

Authors: T.R. Sahroni, S. Sulaiman, I. Romli, M.R. Salleh, H.A. Ariff

Abstract:

The thermal expansion behaviour of silicon carbide (SCS-2) fibre reinforced 6061 aluminium matrix composite subjected to the influenced thermal mechanical cycling (TMC) process were investigated. The thermal stress has important effect on the longitudinal thermal expansion coefficient of the composites. The present paper used experimental data of the thermal expansion behaviour of a SiC/Al composite for temperatures up to 370°C, in which their data was used for carrying out modelling of theoretical predictions.

Keywords: Nonlinear, thermal, fibre reinforced, metal matrixcomposites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702
224 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating

Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo

Abstract:

In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.

Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
223 Analysis of a Novel Strained Silicon RF LDMOS

Authors: V.Fathipour, M. A. Malakootian, S. Fathipour, M. Fathipour

Abstract:

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Keywords: High Frequency MOSFET, Design of RF LDMOS, Strained-Silicon, LDMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795