Nonlinear Thermal Expansion Model for SiC/Al
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Nonlinear Thermal Expansion Model for SiC/Al

Authors: T.R. Sahroni, S. Sulaiman, I. Romli, M.R. Salleh, H.A. Ariff

Abstract:

The thermal expansion behaviour of silicon carbide (SCS-2) fibre reinforced 6061 aluminium matrix composite subjected to the influenced thermal mechanical cycling (TMC) process were investigated. The thermal stress has important effect on the longitudinal thermal expansion coefficient of the composites. The present paper used experimental data of the thermal expansion behaviour of a SiC/Al composite for temperatures up to 370°C, in which their data was used for carrying out modelling of theoretical predictions.

Keywords: Nonlinear, thermal, fibre reinforced, metal matrixcomposites

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072938

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655

References:


[1] R. J. Arsenault. The Strengthening of Aluminium Alloy 6061 by Fibre and Platelet Silicon Carbide. Materials Science and Engineering, 64 (1984) 171-181.
[2] Taya, Minoru, R.J. Arsenault. Metal Matrix Composites; Thermomechanical behaviour. Pergamon Press (1989).
[3] Nan-Ming Yeh and Erhard Krempl. A Numerical Simulation of the Effects of Volume fraction, Creep and Thermal Cycling on the Behaviour of Fibrous Metal Matrix Composites. Journal of Composite Materials. 26 no 6 (1992).
[4] B. Derby, Internal Stress Super-plasticity in metal matrix composites, Scr. Metall., 19 (1985) 703-707.
[5] S. M. Hong. Internal Stress Super-plasticity in 2024 Al-SiC whiskers reinforced composites, J. Compos. Mater., 22 (1985) 102.
[6] K. Wakashima, B. H. Choi and S.H. Lee, Metal Matrix Composites, Proc. 3rd Jpn.-U.S. Conf. On Compoosite Materials, Tokyo, 1986, 1986, pp. 579-587.
[7] J.C. Leflour and R. Locicero, Influence of internal stresses induced by thermal cycling on the plastic deformation resistance of Al/SiC composite material, Scr. Metall.,21 (1987) 1971 -1976.
[8] G. S. Daehn, Plastic deformation of continuous fiber reinforced composites subjected to changing temperature, Scr. Metall., 21 (1989) 247-252.
[9] S. Yoda, N. Kurihara, K. Wakashima and S. Umekawa, Thermal cycling induced deformation of fibrous composites with particular reference to the tungsten copper system. Metall. Trans. A 9 (1978) 1229-1236.
[10] B.K. Min and F.W. Crossman, History dependent thermo-mechanical properties of graphite aluminium unidirectional composites. Proc. 6th ASTM Conf. On Composite Materials. Testing and Design in ASTM Spec. Tech. Publ.787, 1982, pp. 371-392.
[11] E.G. Wolff, B.K. Min and M.M. Kural, Thermal cycling of a unidirectional graphite-magnesium composite. J. Mater. Sci., 20 (1985) 1141-1149.
[12] Colclough, B. Dempster, Y. Favry and D. Valentin, Thermo-mechanical behaviour of SiC-Al Composites, A 135 (1991) 203-207.
[13] H. Mykura, N. Mykura. Thermal Expansion and Stress Relaxation of Metal Matrix Composites. Composites Science and Technology, 45(1992) 307-312.
[14] G. Neite, S. Mielke. Thermal expansion and dimensional stability of alumina fibre reinforced aluminium alloys. Materials Science and Engineering. A148 (1991) 85-92.
[15] C.S. Rao and G.S. Upadhyaya, 2014 and 6061 aluminium alloy based powder metallurgy composites containing silicon carbide particle or fibre. Mater. Design, 16 no. 6 (1995), pp. 359-366.
[16] Song Mei-hui, Xiu Zi Yang, Wu Gao Hui, Chen Guo Qin. Nonlinear temperature characteristic of thermal expansion of Grf/Mg Composites. Transaction Nonferrous Metals Society of China. 19(2009), pp. S382- S386.
[17] D. Karalekas, E.E. Gdoutus, I.M. Daniel. Micromechanical Analysis of Nonlinear Thermal Deformation of Filamentary metal matrix composites. Computational Mechanics (1991) 9, pp. 17-26.
[18] D. Masutti, J.P. Lentz, F. Delannay. Measurement of internal stresses and of the temperature dependence of the matrix yield stress in metal matrix composites from thermal expansion curve. Journal of Material Science Letters, 9(1990), pp. 340-342.
[19] E.E. Gdoutos, D. Karalekas, and I.M Daniel. Thermal Stress Analysis of a Silicon Carbide/Aluminium Composite. Experimental Mechanics. Vol 31 (1991) no3, pp. 202-208.
[20] R.A Schapery. Thermal expansion coefficients of composite materials based on energy principles. Journal of Composite Materials, 1968. Vol. 2 no 3, 380-404.
[21] W. Rosen, Z. Hashin. Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science. Vol. 8 no 2, pp. 157-173.