WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/9999514,
	  title     = {Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)},
	  author    = {A. Udayakumar and  M. Rizvan Basha and  M. Stalin and  V.V Bhanu Prasad},
	  country	= {},
	  institution	= {},
	  abstract     = {Three dimensional non-Interlaced carbon fibre
reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon
interphase were fabricated using isothermal chemical vapor
infiltration (ICVI) combined with polymer impregnation pyrolysis
(PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to
obtain silicon carbide matrix. Thermo gravimetric analysis (TGA),
Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD)
analysis were carried out on PSZ pyrolysed at different temperatures
to understand the pyrolysis and obtaining the optimum pyrolysing
condition to yield β-SiC phase. The density of the composites was
1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h
with one intermediate polysilazane pre-ceramic PIP process.
Mechanical properties of the composite materials were investigated
under tensile, flexural, shear and impact loading. The values of
tensile strength were 200 MPa at room temperature (RT) and 195
MPa at 500°C in air. The average RT flexural strength was 243 MPa.
The lower flexural strength of these composites is because of the
porosity. The fracture toughness obtained from single edge notched
beam (SENB) technique was 39 MPa.m1/2. The work of fracture
obtained from the load-displacement curve of SENB test was 22.8
kJ.m-2. The composites exhibited excellent impact resistance and the
dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined
from instrumented Charpy impact test. The shear strength of the
composite was 93 MPa, which is significantly higher compared 2-D
Cf/SiC composites. Microstructure evaluation of fracture surfaces
revealed the signatures of fracture processes and showed good
support for the higher toughness obtained.
},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {8},
	  number    = {9},
	  year      = {2014},
	  pages     = {1021 - 1028},
	  ee        = {https://publications.waset.org/pdf/9999514},
	  url   	= {https://publications.waset.org/vol/93},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 93, 2014},
	}