@article{(Open Science Index):https://publications.waset.org/pdf/10000203,
	  title     = {Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool},
	  author    = {M. S. Said and  J. A. Ghani and  Che Hassan C. H. and  N. N. Wan and  M. A. Selamat and  R. Othman},
	  country	= {},
	  institution	= {},
	  abstract     = {Metal matrix composites (MMCs) attract considerable
attention as a result from its ability in providing a high strength, high
modulus, high toughness, high impact properties, improving wear
resistance and providing good corrosion resistance compared to
unreinforced alloy. Aluminium Silicon (Al/Si) alloy MMC has been
widely used in various industrial sectors such as in transportation,
domestic equipment, aerospace, military, construction, etc.
Aluminium silicon alloy is an MMC that had been reinforced with
aluminium nitrate (AlN) particle and become a new generation
material use in automotive and aerospace sector. The AlN is one of
the advance material that have a bright prospect in future since it has
features such as lightweight, high strength, high hardness and
stiffness quality. However, the high degree of ceramic particle
reinforcement and the irregular nature of the particles along the
matrix material that contribute to its low density is the main problem
which leads to difficulties in machining process. This paper examined
the tool wear when milling AlSi/AlN Metal Matrix Composite using
a TiB2 (Titanium diboride) coated carbide cutting tool. The volume
of the AlN reinforced particle was 10% and milling process was
carried out under dry cutting condition. The TiB2 coated carbide
insert parameters used were at the cutting speed of (230, 300 and
370m/min, feed rate of 0.8, Depth of Cut (DoC) at 0.4m). The
Sometech SV-35 video microscope system used to quantify of the
tool wear. The result shown that tool life span increasing with the
cutting speeds at (370m/min, feed rate of 0.8mm/tooth and DoC at
0.4mm) which constituted an optimum condition for longer tool life
lasted until 123.2 mins. Meanwhile, at medium cutting speed which
at 300m/m, feed rate of 0.8mm/tooth and depth of cut at 0.4mm we
found that tool life span lasted until 119.86 mins while at low cutting
speed it lasted in 119.66 mins. High cutting speed will give the best
parameter in cutting AlSi/AlN MMCs material. The result will help
manufacturers in machining process of AlSi/AlN MMCs materials.
},
	    journal   = {International Journal of Industrial and Manufacturing Engineering},
	  volume    = {9},
	  number    = {1},
	  year      = {2015},
	  pages     = {39 - 42},
	  ee        = {https://publications.waset.org/pdf/10000203},
	  url   	= {https://publications.waset.org/vol/97},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 97, 2015},
	}