Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31730
Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors

Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari

Abstract:

The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.

Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335502

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615

References:


[1] Canham L. T., Appl. Phys. Lett., 1990, Vol. 57, p. 1046
[2] A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys. vol.82, 1997, p. 909.
[3] A.J. Read, R.J. Needs, K.J. Nash, L.T. Canham, P.D.J. Calcott, A. Qteish, Phys. Rev. Lett. 69, 1992, p. 1232.
[4] G. Bomchill, A. Halimaoui, R. Herino, Microelectron. Eng. vol. 8, 1988, p. 293.
[5] A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, A. Boyer, Sens. Actuators. vol. 79, 2000, p. 189.
[6] R. Bilyalov, L. Stalmans, G. Beaucarne, R. Loo, Caymax, J. Poortmans, J. Nijs, Sol. Energy Mater. Sol. Cells. vol. 65, 2001, p. 477.
[7] R.B. Bergmann, Appl. Phys. A. vol. 69, 1999, p. 187.
[8] Brendel, Proceeding of the 14th European Photovoltaic Solar Energy Conference, Barcelona, 1997, p. 1354.
[9] Shuo Huang, Xiaodong Ruan, Jun Zou, Xin Fu,Huayong Yang, Microsyst Technol, vol. 15, 2009, pp. 837-842
[10] G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, J. Physics D. vol. 30, 1997, p. 2911.
[11] V. Lysenko, S. Perichon, B. Remaki, D. Barbier, Sens. Actuators A, vol. 99 , 2002, pp. 13-24.
[12] P. Maccagnani, R. Angelucci, P. Pozzi, A. Poggi, L. Dori, G.C. Cardinali, P. Negrini, Sens. Actuators B, vol. 49 1998, pp. 22-29.
[13] C. Tsamis, A. Tserepi, A.G. Nassiopoulou, Sens. Actuators B, vol. 95, 2003, pp. 78-82.
[14] Sze S.M., physics of semiconductor devices, New York: John Wiley and Sons., 1981, p. 42-43
[15] Yon J. J., Barla K, Herino R and Bomchil, J. Appl. Phys., 1987, vol. 62, 1042-1048
[16] D. E. Aspnes, J. B. Theeten, F. Hottier, Phys. Rev. B, vol. 20, 1979, 32- 92.
[17] I.H. Campbell, P.M. Fauchet, Solid State Commun., vol. 58, n┬░10, 1986, pp. 739-741.
[18] Nonnenmacher M., Wickramasinghe H. K., scanning probe microscopy of thermal conductivity and subsurface properties, Appl. Phys. Lett., , vol. 61, n┬░2, 1992, pp. 168-170