A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating
Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo
Abstract:
In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.
Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339151
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807References:
[1] C. Tsai, H. Taga, C. Yang, Y. Lo, and T. Liang, “Demonstration of a ROADM using cyclic AWGs,” Journal of Lightwave Technology 29, pp. 2780-2783, 2011.
[2] C. R. Doerr, L. W. Stulz, D. S. Levy, L. Gomez, M. Cappuzzo, J. Bailey, R. Long, A. Wong-Foy, E. Laskowski, E. Chen, S. Patel, and T. Murphy, Eight-wavelength add-drop filter with true reconfigurability,” IEEE Photonics Technology Letters 15, pp. 138–140, 2003.
[3] Q. Fang, F. Li, Y. Liu, “Compact SOI arrayed waveguide grating demultiplexer with broad spectral response,” Optics Communications 258, pp 155-158, 2006.
[4] X. Tu, T. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Optics Express 21, pp 12776-12782, 2013.
[5] J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Optics Express 20, pp. 26411-26423, 2012.
[6] Q. Fang, L. Jia, J. Song, A. E. J. Lim, X. Tu, X. Luo, M. Yu, and G. Lo, “Demonstration of a vertical pin Ge-On-Si photo-detector on a wet-etched Si recess,” Optics Express 21, pp. 23325-23330, 2013.
[7] P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M. Rouifed, S. Cecchi, P. Crozat, G. Isella, L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nature Photonics 8, pp. 482-488, 2014.
[8] Q. Fang, J. Song, X. Luo, M. Yu, G. Lo, and Y. Liu, “Mode-size converter with high coupling efficiency and broad bandwidth,” Optics Express 19, pp. 21588-21594, 2011.
[9] Q. Fang, J. Song, T. Liow, H. Cai, M. Yu, G. Lo, D. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photonics Technology Letters 23, pp. 525-527, 2011.
[10] K. Sasaki, F. Ohno, A. Motegi, T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveugides,” Electronics Letters 41, pp. 801-802, 2005.
[11] W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE Journal of Selected Topics in Quantum Electronics 12, pp. 1394-1401, 2006.