WASET
	%0 Journal Article
	%A Tadahiro Wada and  Koji Iwamoto
	%D 2012
	%J International Journal of Industrial and Manufacturing Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 69, 2012
	%T Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel
	%U https://publications.waset.org/pdf/564
	%V 69
	%X In turning hardened steel, polycrystalline cubic boron
nitride (cBN) compacts are widely used, due to their higher hardness
and higher thermal conductivity. However, in milling hardened steel,
fracture of cBN cutting tools readily occurs because they have poor
fracture toughness. Therefore, coated cemented carbide tools, which
have good fracture toughness and wear resistance, are generally
widely used. In this study, hardened steel (ASTM D2, JIS SKD11,
60HRC) was milled with three physical vapor deposition
(PVD)-coated cemented carbide end mill cutters in order to determine
effective tool materials for cutting hardened steel at high cutting
speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and
(Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of
coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and
(Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and
the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films,
respectively. Furthermore, commercial (Ti,Al)N-based coating film
was also used. The following results were obtained: (1) In milling
hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the
(Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the
(Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial
(Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated
tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool
wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an
increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated
cemented carbide was an effective tool material for high-speed cutting
below a cutting speed of 3.33 m/s.
	%P 2007 - 2010