Investigation of Mesoporous Silicon Carbonization Process
Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev
Abstract:
In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.
Keywords: Silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316141
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921References:
[1] M. Zielinski, M. Portail, S. Roy, T. Chassagne, C. Moisson, S. Kret, Y. Cordier, “Elaboration of (111) oriented 3C–SiC/Si layers for template application in nitride epitaxy (Periodical style),” Materials Science and Engineering, 2009, B. 165, pp. 9–14.
[2] Y. Cordier, M. Portail, S. Chenot, O. Tottereau, M. Zielinski, T. Chassagne, “AlGaN/GaN high electron mobility transistors grown on 3C-SiC/Si(111) (Periodical style),” Journal of Crystal Growth, 2008, 310, pp. 4417–4423.
[3] Y. H. Zhu, J. C. Zhang, Z. T. Chen, and T. Egawa, “Demonstration on GaN-based light-emitting diodes grown on 3CSiC/Si(111) (Periodical style),” J. Appl. Phys. 2009, 106, 124506.
[4] Robert F. Davis, T. Gehrke, K. J. Linthicum, T. S. Zheleva, E. A. Preble, P. Rajagopal, C. A. Zorman, M. Mehregany, “Pendeo-epitaxial growth of thin films of gallium nitride and related materials and their characterization (Periodical style),” Journal of Crystal Growth, 2001, 225, pp. 134–140.
[5] V. Cimalla, J. Pezoldt, O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications (Periodical style),” J. Phys. D: Appl. Phys., 2007, 40, pp 6386–6434.
[6] S. Kersulis, V. Mitin, Semicond. Sci. Technol., 1995, vol. 10, 653.
[7] P. A. Maksym, Semicond. Sci. Technol, 1998. № 3. p. 594.
[8] N. I. Kargin, A. O. Sultanov, A. V. Bondarenko, V. P. Bondarenko, S. V. Red’ko, A. S. Ionov, “Formation and structure of mesoporous silicon (Periodical style),” Russian Microelectronics, 2014, Т. 43, № 8, pp. 531-535.
[9] M. Galinsky, U. Senechal, “The Impact of Microstructure Geometry on the Mass Transport in Artificial Pores (Periodical style),” Modelling and Simulation in Engineering, Volume, 2014, pp. 1-7.
[10] J. Crank, “The Mathematics of Diffusion,” Oxford university press, 1975.
[11] S. E. Albo, L. J. Broadbelt, R. Q. Snurr, “Multiscale modeling of transport and residence times in nanostructured membranes (Periodical style),” AIChE Journal, 2006, vol. 52, № 11, pp. 3679–3687.
[12] M. A. Rolando Roque-Malherbe, “Adsorption and Diffusion in Nanoporous Materials”, 2007.
[13] Yu. S. Nagornov, “Thermodynamics of a phase transition of silicon nanoparticles at the annealing and carbonization of porous silicon (Periodical style),” Journal of Experimental and Theoretical Physics, December 2015, vol. 121, is. 6, pp. 1042–1051.
[14] Deal, B. E., Grove A. S. “General Relationship for the Thermal Oxidation of Silicon (Periodical style),” Journal of Applied Physics, 1965, 36, 12, pp. 3770–3778.