Search results for: Leakage%20current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 136

Search results for: Leakage%20current

106 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management

Authors: Jiří Barta

Abstract:

The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.

Keywords: Computer Simulation, Symos97, spread, simulation software, harmful substances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
105 Low Power CNFET SRAM Design

Authors: Pejman Hosseiniun, Rose Shayeghi, Iman Rahbari, Mohamad Reza Kalhor

Abstract:

CNFET has emerged as an alternative material to silicon for high performance, high stability and low power SRAM design in recent years. SRAM functions as cache memory in computers and many portable devices. In this paper, a new SRAM cell design based on CNFET technology is proposed. The proposed SRAM cell design for CNFET is compared with SRAM cell designs implemented with the conventional CMOS and FinFET in terms of speed, power consumption, stability, and leakage current. The HSPICE simulation and analysis show that the dynamic power consumption of the proposed 8T CNFET SRAM cell’s is reduced about 48% and the SNM is widened up to 56% compared to the conventional CMOS SRAM structure at the expense of 2% leakage power and 3% write delay increase.

Keywords: SRAM cell, CNFET, low power, HSPICE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
104 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: Flammability, paraffin, plasterboard, thermal energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 983
103 Solid Circulation Rate and Gas Leakage Measurements in an Interconnected Bubbling Fluidized Beds

Authors: Ho-Jung Ryu, Seung-Yong Lee, Young Cheol Park, Moon-Hee Park

Abstract:

Two-interconnected fluidized bed systems are widely used in various processes such as Fisher-Tropsch, hot gas desulfurization, CO2 capture-regeneration with dry sorbent, chemical-looping combustion, sorption enhanced steam methane reforming, chemical-looping hydrogen generation system, and so on. However, most of two-interconnected fluidized beds systems require riser and/or pneumatic transport line for solid conveying and loopseals or seal-pots for gas sealing, recirculation of solids to the riser, and maintaining of pressure balance. The riser (transport bed) is operated at the high velocity fluidization condition and residence times of gas and solid in the riser are very short. If the reaction rate of catalyst or sorbent is slow, the riser can not ensure sufficient contact time between gas and solid and we have to use two bubbling beds for each reaction to ensure sufficient contact time. In this case, additional riser must be installed for solid circulation. Consequently, conventional two-interconnected fluidized bed systems are very complex, large, and difficult to operate. To solve these problems, a novel two-interconnected fluidized bed system has been developed. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables on solid circulation rate, gas leakage between two beds have been investigated in a cold mode two-interconnected fluidized bed system. Moreover, long-term operation of continuous solid circulation up to 60 hours has been performed to check feasibility of stable operation.

Keywords: Fluidized bed, Gas leakage, Long-term operation, Solid circulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
102 Development of a Remote Testing System for Performance of Gas Leakage Detectors

Authors: Gyoutae Park, Woosuk Kim, Sangguk Ahn, Seungmo Kim, Minjun Kim, Jinhan Lee, Youngdo Jo, Jongsam Moon, Hiesik Kim

Abstract:

In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries.

Keywords: Gas leakage detector, inspection instrument, extracting numerals, concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
101 Development of Vibration Sensor with Wide Frequency Range Based on Condenser Microphone -Estimation System for Flow Rate in Water Pipes-

Authors: Hironori Kakuta, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Water leakage is a serious problem in the maintenance of a waterworks facility. Monitoring the water flow rate is one way to locate leakage. However, conventional flowmeters such as the wet-type flowmeter and the clamp-on type ultrasonic flowmeter require additional construction for their installation and are therefore quite expensive. This paper proposes a novel estimation system for the flow rate in a water pipeline, which employs a vibration sensor. This assembly can be attached to any water pipeline without the need for additional high-cost construction. The vibration sensor is designed based on a condenser microphone. This sensor detects vibration caused by water flowing through a pipeline. It is possible to estimate the water flow rate by measuring the amplitude of the output signal from the vibration sensor. We confirmed the validity of the proposed sensing system experimentally.

Keywords: Condenser microphone, Flow rate estimation, Piping vibration, Water pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253
100 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: Acoustic sensor array, spacecraft, damage assessment, leakage location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
99 Reducing Test Vectors Count Using Fault Based Optimization Schemes in VLSI Testing

Authors: Vinod Kumar Khera, R. K. Sharma, A. K. Gupta

Abstract:

Power dissipation increases exponentially during test mode as compared to normal operation of the circuit. In extreme cases, test power is more than twice the power consumed during normal operation mode. Test vector generation scheme is key component in deciding the power hungriness of a circuit during testing. Test vector count and consequent leakage current are functions of test vector generation scheme. Fault based test vector count optimization has been presented in this work. It helps in reducing test vector count and the leakage current. In the presented scheme, test vectors have been reduced by extracting essential child vectors. The scheme has been tested experimentally using stuck at fault models and results ensure the reduction in test vector count.

Keywords: Low power VLSI testing, independent fault, essential faults, test vector reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
98 Network Application Identification Based on Communication Characteristics of Application Messages

Authors: Yuji Waizumi, Yuya Tsukabe, Hiroshi Tsunoda, Yoshiaki Nemoto

Abstract:

A person-to-person information sharing is easily realized by P2P networks in which servers are not essential. Leakage of information, which are caused by malicious accesses for P2P networks, has become a new social issues. To prevent information leakage, it is necessary to detect and block traffics of P2P software. Since some P2P softwares can spoof port numbers, it is difficult to detect the traffics sent from P2P softwares by using port numbers. It is more difficult to devise effective countermeasures for detecting the software because their protocol are not public. In this paper, a discriminating method of network applications based on communication characteristics of application messages without port numbers is proposed. The proposed method is based on an assumption that there can be some rules about time intervals to transmit messages in application layer and the number of necessary packets to send one message. By extracting the rule from network traffic, the proposed method can discriminate applications without port numbers.

Keywords: Network Application Identification, Message Transition Pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
97 A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

Authors: Arash Azizi Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Keywords: Positive feedback, leakage current, read operation, write operation, dynamic energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
96 Design and Analysis of Highly Efficient and Reliable Single-Phase Transformerless Inverter for PV Systems

Authors: L. Ashok Kumar, N. Sujith Kumar

Abstract:

Most of the PV systems are designed with transformer for safety purpose with galvanic isolation. However, the transformer is big, heavy and expensive. Also, it reduces the overall frequency of the conversion stage. Generally PV inverter with transformer is having efficiency around 92%–94% only. To overcome these problems, transformerless PV system is introduced. It is smaller, lighter, cheaper and higher in efficiency. However, dangerous leakage current will flow between PV array and the grid due to the stray capacitance. There are different types of configurations available for transformerless inverters like H5, H6, HERIC, oH5, and Dual paralleled buck inverter. But each configuration is suffering from its own disadvantages like high conduction losses, shoot-through issues of switches, dead-time requirements at zero crossing instants of grid voltage to avoid grid shoot-through faults and MOSFET reverse recovery issues. The main objective of the proposed transformerless inverter is to address two key issues: One key issue for a transformerless inverter is that it is necessary to achieve high efficiency compared to other existing inverter topologies. Another key issue is that the inverter configuration should not have any shoot-through issues for higher reliability.

Keywords: Leakage current, common mode (CM), photovoltaic (PV) systems, pulse width modulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
95 Trap Assisted Tunneling Model for Gate Current in Nano Scale MOSFET with High-K Gate Dielectrics

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

This paper presents a new compact analytical model of the gate leakage current in high-k based nano scale MOSFET by assuming a two-step inelastic trap-assisted tunneling (ITAT) process as the conduction mechanism. This model is based on an inelastic trap-assisted tunneling (ITAT) mechanism combined with a semiempirical gate leakage current formulation in the BSIM 4 model. The gate tunneling currents have been calculated as a function of gate voltage for different gate dielectrics structures such as HfO2, Al2O3 and Si3N4 with EOT (equivalent oxide thickness) of 1.0 nm. The proposed model is compared and contrasted with santaurus simulation results to verify the accuracy of the model and excellent agreement is found between the analytical and simulated data. It is observed that proposed analytical model is suitable for different highk gate dielectrics simply by adjusting two fitting parameters. It was also shown that gate leakages reduced with the introduction of high-k gate dielectric in place of SiO2.

Keywords: Analytical model, High-k gate dielectrics, inelastic trap assisted tunneling, metal–oxide–semiconductor (MOS) devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3250
94 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
93 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause  significant damages in critical facilities such as nuclear power plants  and hospitals. Historically, it was reported that the damage from the  leakage of sprinkler systems, resulted in the shutdown of hospitals for  several weeks by the 1971 San Fernando and 1994 North Ridge  earthquakes. In most cases, water leakages were observed at the cross  joints, sprinkler heads, and T-joint connections in piping systems  during and after the seismic events. Hence, the primary objective of  this study was to understand the seismic performance of T-joint  connections and to develop an analytical Finite Element (FE) model  for the T-joint systems of 2-inch fire protection piping system in  hospitals subjected to seismic ground motions. In order to evaluate the  FE models of the piping systems using OpenSees, two types of  materials were used: 1) Steel02 materials and 2) Pinching4 materials.  Results of the current study revealed that the nonlinear  moment-rotation FE models for the threaded T-joint reconciled well  with the experimental results in both FE material models. However,  the system-level fragility determined from multiple nonlinear time  history analyses at the threaded T-joint was slightly different. The  system-level fragility at the T-joint, determined by Pinching4 material  was more conservative than that of using Steel02 material in the piping  system.

Keywords: Fragility, T-joint, Piping, Leakage, Sprinkler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
92 Study of Hydrophobicity Effect on 220kV Double Tension Insulator String Surface Using Finite Element Method

Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, P. Vijaya Haritha

Abstract:

Insulators are one of the most significant equipment in power system. The insulators’ operation may affect the power flow, line loss and reliability. The electrical parameters that influence the performance of insulator are surface leakage current, corona and dry band arcing. Electric field stresses on the insulator surface will degrade the insulating properties and lead to puncture. Electric filed stresses can be analyzed by numerical methods and experimental evaluation. As per economic aspects, evaluation by numerical methods are best. In outdoor insulation, a hydrophobic surface can facilitate to prevent water film formation on the insulation surface, which is decisive for diminishing leakage currents and partial discharge (PD) under heavy polluted environments and harsh weather conditions. Polymer materials like silicone rubber have an outstanding hydrophobic property among general insulation materials. In this paper, electrical field intensity of 220 kV porcelain and polymer double tension insulator strings at critical regions are analyzed and compared by using Finite Element Method. Hydrophobic conditions of polymer insulator with equal and unequal water molecule conditions are verified by using finite element method.

Keywords: Porcelain insulator, polymer insulator, electric field analysis, EFA, finite element method, FEM, hydrophobicity, FEMM-2D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
91 The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer

Authors: JeongJu Kim, Heeyoon Chung, DongHo Rhee, HyungHee Cho

Abstract:

There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.

Keywords: Gas turbine, film cooling effectiveness, endwall, fillet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
90 Convection through Light Weight Timber Constructions with Mineral Wool

Authors: J. Schmidt, O. Kornadt

Abstract:

The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.

Keywords: convection, convective transfer, infiltration, mineralwool, permeability, resistance, leakage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
89 Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

The widespread popularity of mobile devices and the development of artificial intelligence (AI) have led to the widespread adoption of deep learning (DL) in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace, a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Additionally, we propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. Using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We conduct an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace outperformed FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: Mobile computing, deep learning apps, sensitive information, static analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
88 1/f Noise in Quantum-Size Heteronanostructures Based On GaAs and Alloys

Authors: Alexey V. Klyuev, Arkady. V. Yakimov

Abstract:

The 1/f noise investigation in nanoscale light-emitting diodes and lasers, based on GaAs and alloys, is presented here. Leakage and additional (to recombination through quantum wells and/or dots) nonlinear currents were detected and it was shown that these currents are the main source of the 1/f noise in devices studied.

Keywords: Lasers, light-emitting diodes, quantum dots, quantum wells, 1/f noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
87 Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Organic Nutrients

Authors: Ayman El Sabagh, Sobhy Sorour, Abd Elhamid Omar, Adel Ragab, Mohammad Sohidul Islam, Celaleddin Barutçular, Akihiro Ueda, Hirofumi Saneoka

Abstract:

Salinity is one of the major factors limiting crop production in an arid environment. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. So it is implacable to either search for salinity enhancement of soybean plants. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine as well as, compost application on soybean plants grown under salinity stress. The experiment was conducted under greenhouse conditions at the Graduate School of Biosphere Science Laboratory of Hiroshima University, Japan in 2011. The experiment was designed as a spilt-split plot based on randomized complete block design with four replications. The treatments could be summarized as follows; (i) salinity concentrations (0 and 15 mM), (ii) compost treatments (0 and 24 t ha-1) and (iii) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Results indicated that salinity stress induced reduction in growth and physiological aspects (dry weight per plant, chlorophyll content, N and K+ content) of soybean plant compared with those of the unstressed plants. On the other hand, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Special attention was paid to, the tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved K+, and proline accumulation. While, significantly decreased electrolyte leakage ratio and Na+ content. These results clearly demonstrate that harmful effect of salinity could reduce on growth aspects of soybean. Consequently, exogenous osmoprotectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance of soybean in the drylands.

Keywords: Compost, glycine betaine, growth, proline, salinity tolerance, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3181
86 Effect of Oil Contamination on the Liquefaction Behavior of Sandy

Authors: S. A. Naeini, M. M. Shojaedin

Abstract:

Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.

Keywords: Cyclic triaxial test, Liquefaction resistance, Oil contamination, Sandy soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
85 Analysis of an Electrical Transformer: A Bond Graph Approach

Authors: Gilberto Gonzalez-A

Abstract:

Bond graph models of an electrical transformer including the nonlinear saturation are presented. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two and three windings using the properties of a bond graph. The modelling and analysis using this methodology to three phase power transformers or transformers with internal incipient faults can be extended.

Keywords: Bond graph, electrical transformer, nonlinear saturation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
84 Designing of Full Adder Using Low Power Techniques

Authors: Shashank Gautam

Abstract:

This paper proposes techniques like MT CMOS, POWER GATING, DUAL STACK, GALEOR and LECTOR to reduce the leakage power. A Full Adder has been designed using these techniques and power dissipation is calculated and is compared with general CMOS logic of Full Adder. Simulation results show the validity of the proposed techniques is effective to save power dissipation and to increase the speed of operation of the circuits to a large extent.

Keywords: Low Power, MT CMOS, Galeor, Lector, Power Gating, Dual Stack, Full Adder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
83 Using LabVIEW Software in an Introductory Residual Current Device Course

Authors: B. Rajkumarsingh, S. Goolaup, A. Galleegadoo

Abstract:

Laboratory classes in Electrical Engineering are often hampered by safety issues, as students have to work on high voltage lines. One solution is to make use of virtual laboratory simulations, to help students understand the concepts taught in their coursework. In this context, we have conceived and implemented virtual lab experiments in connection with the study of earthing arrangements. In this work, software was developed, which aid student in understanding the working of a residual current device (RCD) in a TT earthing system. Various parameters, such as the earthing resistances, leakage currents and harmonics were included for a TT system with RCD connection.

Keywords: TT system, RCD, LabVIEW, Learning aids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
82 On the Operation Mechanism and Device Modeling of AlGaN/GaN High Electron Mobility Transistors (HEMTs)

Authors: Li Yuan, Weizhu Wang, Kean Boon Lee, Haifeng Sun, Susai Lawrence Selvaraj, Shane Todd, Guo-Qiang Lo

Abstract:

In this work, the physical based device model of AlGaN/GaN high electron mobility transistors (HEMTs) has been established and the corresponding device operation behavior has been investigated also by using Sentaurus TCAD from Synopsys. Advanced AlGaN/GaN hetero-structures with GaN cap layer and AlN spacer have been considered and the GaN cap layer and AlN spacer are found taking important roles on the gate leakage blocking and off-state breakdown voltage enhancement.

Keywords: AlGaN/GaN, HEMT, Physical mechanism, TCAD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3758
81 Resistive RAM Based on Hfox and its Temperature Instability Study

Authors: Z. Fang, H.Y. Yu, W.J. Liu, N. Singh, G.Q. Lo

Abstract:

High performance Resistive Random Access Memory (RRAM) based on HfOx has been prepared and its temperature instability has been investigated in this work. With increasing temperature, it is found that: leakage current at high resistance state increases, which can be explained by the higher density of traps inside dielectrics (related to trap-assistant tunneling), leading to a smaller On/Off ratio; set and reset voltages decrease, which may be attributed to the higher oxygen ion mobility, in addition to the reduced potential barrier to create / recover oxygen ions (or oxygen vacancies); temperature impact on the RRAM retention degradation is more serious than electrical bias.

Keywords: RRAM, resistive switching, temperature instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
80 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Liyuan Wang, Shouming Zhong

Abstract:

In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.

Keywords: State estimator, Neural networks, Globally exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
79 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

Authors: Gilberto Gonzalez-A, Dunia Nuñez-P

Abstract:

Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.

Keywords: Bond graph, electrical transformer, magnetic circuits, nonlinear saturation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4525
78 Relining of Domestic Piping System with Rubber Filled Epoxy and Reinforced Polyester Composites

Authors: Parastou Kharazmi, Folke Björk

Abstract:

Pipe failure and leakage is a problematic issue and the traditional solution of replacing the pipes is costly and time consuming. Rehabilitation by relining materials based on polymer composites is an alternative solution towards the degradation problem of the old piping. This paper provides a brief summary of advances in technology, methods and materials for relining as well as a summary of the degradation analyses of the two main composite materials used for relining, rubber filled epoxy and reinforced polyester baltoflake when they are exposed in deionized water and elevated temperature up to 80°C for a duration of 2-14 months in the laboratory.

Keywords: Composite, Epoxy, Polyester, Pipes, Relining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
77 A 16Kb 10T-SRAM with 4x Read-Power Reduction

Authors: Pardeep Singh, Sanjay Sharma, Parvinder S. Sandhu

Abstract:

This work aims to reduce the read power consumption as well as to enhance the stability of the SRAM cell during the read operation. A new 10-transisor cell is proposed with a new read scheme to minimize the power consumption within the memory core. It has separate read and write ports, thus cell read stability is significantly improved. A 16Kb SRAM macro operating at 1V supply voltage is demonstrated in 65 nm CMOS process. Its read power consumption is reduced to 24% of the conventional design. The new cell also has lower leakage current due to its special bit-line pre-charge scheme. As a result, it is suitable for low-power mobile applications where power supply is restricted by the battery.

Keywords: A 16Kb 10T-SRAM, 4x Read-Power Reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897