Search results for: Sprinkler.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Sprinkler.

4 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause  significant damages in critical facilities such as nuclear power plants  and hospitals. Historically, it was reported that the damage from the  leakage of sprinkler systems, resulted in the shutdown of hospitals for  several weeks by the 1971 San Fernando and 1994 North Ridge  earthquakes. In most cases, water leakages were observed at the cross  joints, sprinkler heads, and T-joint connections in piping systems  during and after the seismic events. Hence, the primary objective of  this study was to understand the seismic performance of T-joint  connections and to develop an analytical Finite Element (FE) model  for the T-joint systems of 2-inch fire protection piping system in  hospitals subjected to seismic ground motions. In order to evaluate the  FE models of the piping systems using OpenSees, two types of  materials were used: 1) Steel02 materials and 2) Pinching4 materials.  Results of the current study revealed that the nonlinear  moment-rotation FE models for the threaded T-joint reconciled well  with the experimental results in both FE material models. However,  the system-level fragility determined from multiple nonlinear time  history analyses at the threaded T-joint was slightly different. The  system-level fragility at the T-joint, determined by Pinching4 material  was more conservative than that of using Steel02 material in the piping  system.

Keywords: Fragility, T-joint, Piping, Leakage, Sprinkler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
3 Limit State of Trapezoidal Metal Sheets Exposed to Concentrated Load

Authors: Kateřina Jurdová

Abstract:

In most industrial compounds are used trapezoidal metal sheets like a roof decks. These trapezoidal metal sheets are exposed by concentrated loads, usually by service loads arise from installation of air distribution, sanitary distribution, sprinkler system or wiring installation. In objects of public facilities (like shopping centre, tennis hall, etc.) they can be used for hanging advertising posters etc, too. These systems work as “building kit”. These anchoring systems are represented by clamps in shape of “V”.

This paper is occupy with recapitulation of installation systems available in trade with focus on load-bearing capacity specified by producer and on possible methods, how exactly define load bearing capacity of trapezoidal sheet loaded by concentrated load. The load bearing capacity was verified at experimental samples to determine real behavior of trapezoidal metal sheets exposed to concentrated loads.

Keywords: Clamps, concentrated load, loading test, trapezoidal metal sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2 Bearing Capacity of Sheet Hanger Connection to the Trapezoidal Metal Sheet

Authors: Kateřina Jurdová

Abstract:

Hanging to the trapezoidal sheet by decking hanger is a very widespread solution used in civil engineering to lead the distribution of energy, sanitary, air distribution system etc. under the roof or floor structure. The trapezoidal decking hanger is usually a part of the whole installation system for specific distribution medium. The leading companies offer installation systems for each specific distribution e.g. pipe rings, sprinkler systems, installation channels etc. Every specific part is connected to the base connector which is decking hanger. The own connection has three main components: decking hanger, threaded bar with nuts and web of trapezoidal sheet. The aim of this contribution is determinate the failure mechanism of each component in connection. Load bearing capacity of most components in connection could be calculated by formulas in European codes. This contribution is focused on problematic of bearing resistance of threaded bar in web of trapezoidal sheet. This issue is studied by experimental research and numerical modelling. This contribution presented the initial results of experiment which is compared with numerical model of specimen.

Keywords: Decking hanger, concentrated load, connection, load bearing capacity, trapezoidal metal sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624
1 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation

Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida

Abstract:

Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.

Keywords: Clogging, double layer porous asphalt, infiltration capacity, rainfall intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935