Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 170

Search results for: quantum dots

170 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene

Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen

Abstract:

A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.

Keywords: CdS quantum dots, modification, detection, naphthalene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
169 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: Quantum Dots, Nano-Particles, LSPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
168 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
167 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots

Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau

Abstract:

Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.

Keywords: Graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3537
166 1/f Noise in Quantum-Size Heteronanostructures Based On GaAs and Alloys

Authors: Alexey V. Klyuev, Arkady. V. Yakimov

Abstract:

The 1/f noise investigation in nanoscale light-emitting diodes and lasers, based on GaAs and alloys, is presented here. Leakage and additional (to recombination through quantum wells and/or dots) nonlinear currents were detected and it was shown that these currents are the main source of the 1/f noise in devices studied.

Keywords: Lasers, light-emitting diodes, quantum dots, quantum wells, 1/f noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
165 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano

Abstract:

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
164 Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions

Authors: David Prochazka, Ľudmila Ballová, Karel Novotný, Jan Novotný, Radomír Malina, Petr Babula, Vojtěch Adam, René Kizek, Klára Procházková, Jozef Kaiser

Abstract:

Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.

Keywords: Laser-Induced Breakdown Spectroscopy, liquid analysis, nanocrystals, nanotechnology, Quantum dots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
163 Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

Authors: Mikhail Vladimirovich Deryabin, Morten Willatzen

Abstract:

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

Keywords: cylindrical quantum dots, electronic eigen energies, red and white Gaussian noise, ensemble averaging effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
162 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics

Authors: S. M. Giripunje, Shikha Jindal

Abstract:

Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.

Keywords: Graphene, mobility, nanocomposites, photovoltaics, quantum dots, zinc sulphide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
161 Sonochemically Prepared SnO2 Quantum Dots as a Selective and Low Temperature CO Sensor

Authors: S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, O. Alizadeh Sahraei, M. Vesali Naseh

Abstract:

In this study, a low temperature sensor highly selective to CO in presence of methane is fabricated by using 4 nm SnO2 quantum dots (QDs) prepared by sonication assisted precipitation. SnCl4 aqueous solution was precipitated by ammonia under sonication, which continued for 2 h. A part of the sample was then dried and calcined at 400°C for 1.5 h and characterized by XRD and BET. The average particle size and the specific surface area of the SnO2 QDs as well as their sensing properties were compared with the SnO2 nano-particles which were prepared by conventional sol-gel method. The BET surface area of sonochemically as-prepared product and the one calcined at 400°C after 1.5 hr are 257 m2/gr and 212 m2/gr respectively while the specific surface area for SnO2 nanoparticles prepared by conventional sol-gel method is about 80m2/gr. XRD spectra revealed pure crystalline phase of SnO2 is formed for both as-prepared and calcined samples of SnO2 QDs. However, for the sample prepared by sol-gel method and calcined at 400°C SnO crystals are detected along with those of SnO2. Quantum dots of SnO2 show exceedingly high sensitivity to CO with different concentrations of 100, 300 and 1000 ppm in whole range of temperature (25- 350°C). At 50°C a sensitivity of 27 was obtained for 1000 ppm CO, which increases to a maximum of 147 when the temperature rises to 225°C and then drops off while the maximum sensitivity for the SnO2 sample prepared by the sol-gel method was obtained at 300°C with the amount of 47.2. At the same time no sensitivity to methane is observed in whole range of temperatures for SnO2 QDs. The response and recovery times of the sensor sharply decreases with temperature, while the high selectivity to CO does not deteriorate.

Keywords: Sonochemical, SnO2 QDs, SnO2 gas sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
160 Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip Chip Packaging

Authors: Zainudin Kornain, Azman Jalar, Rozaidi Rasid, Fong Chee Seng

Abstract:

Void formation in underfill is considered as failure in flip chip manufacturing process. Void formation possibly caused by several factors such as poor soldering and flux residue during die attach process, void entrapment due moisture contamination, dispense pattern process and setting up the curing process. This paper presents the comparison of single step and two steps curing profile towards the void and black dots formation in underfill for Hi-CTE Flip Chip Ceramic Ball Grid Array Package (FC-CBGA). Statistic analysis was conducted to analyze how different factors such as wafer lot, sawing technique, underfill fillet height and curing profile recipe were affected the formation of voids and black dots. A C-Mode Scanning Aqoustic Microscopy (C-SAM) was used to scan the total count of voids and black dots. It was shown that the 2 steps curing profile provided solution for void elimination and black dots in underfill after curing process.

Keywords: black dots formation, curing profile, FC-CBGA, underfill, void formation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3791
159 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots

Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi

Abstract:

The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.

Keywords: Biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
158 Fluorescent-Core Microcavities Based On Silicon Quantum Dots for Oil Sensing Applications

Authors: V. Zamora, Z. Zhang, A. Meldrum

Abstract:

The compatibility of optical resonators with microfluidic systems may be relevant for chemical and biological applications. Here, a fluorescent-core microcavity (FCM) is investigated as a refractometric sensor for heavy oils. A high-index film of silicon quantum dots (QDs) was formed inside the capillary, supporting cylindrical fluorescence whispering gallery modes (WGMs). A set of standard refractive index oils was injected into a capillary, causing a shift of the WGM resonances toward longer wavelengths. A maximum sensitivity of 240 nm/RIU (refractive index unit) was found for a nominal oil index of 1.74. As well, a sensitivity of 22 nm/RIU was obtained for a lower index of 1.48, more typical of fuel hydrocarbons. Furthermore, the observed spectra and sensitivities were compared to theoretical predictions and reproduced via FDTD simulations, showing in general an excellent agreement. This work demonstrates the potential use of FCMs for oil sensing applications and the more generally for detecting liquid solutions with a high refractive index or high viscosity.

Keywords: Oils, optical resonators, sensing applications, whispering gallery modes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
157 The Influence of Directionality on the Giovanelli Illusion

Authors: Michele Sinico

Abstract:

In the Giovanelli illusion, some collinear dots appear misaligned, when each dot lies within a circle and the circles are not collinear. In this illusion, the role of the frame of reference, determined by the circles, is considered a crucial factor. Three experiments were carried out to study the influence of directionality of the circles on the misalignment. The adjustment method was used. Participants changed the orthogonal position of each dot, from the left to the right of the sequence, until a collinear sequence of dots was achieved. The first experiment verified the illusory effect of the misalignment. In the second experiment, the influence of two different directionalities of the circles (-0.58° and +0.58°) on the misalignment was tested. The results show an over-normalization on the sequences of the dots. The third experiment tested the misalignment of the dots without any inclination of the sequence of circles (0°). Only a local illusory effect was found. These results demonstrate that the directionality of the circles, as a global factor, can increase the misalignment. The findings also indicate that directionality and the frame of reference are independent factors in explaining the Giovanelli illusion.

Keywords: Giovanelli illusion, visual illusion, directionality, misalignment, frame of reference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456
156 Study of Encapsulation of Quantum Dots in Polystyrene and Poly (E-Caprolactone)Microreactors Prepared by Microvolcanic Eruption of Freeze Dried Microspheres

Authors: Deepak Kukkar, Inderpreet Kaur, Jagtar Singh, Lalit M Bharadwaj

Abstract:

Polymeric microreactors have emerged as a new generation of carriers that hold tremendous promise in the areas of cancer therapy, controlled delivery of drugs, for removal of pollutants etc. Present work reports a simple and convenient methodology for synthesis of polystyrene and poly caprolactone microreactors. An aqueous suspension of carboxylated (1μm) polystyrene latex particles was mixed with toluene solution followed by freezing with liquid nitrogen. Freezed particles were incubated at -20°C and characterized for formation of voids on the surface of polymer microspheres by Field Emission Scanning Electron Microscope. The hollow particles were then overnight incubated at 40ºC with unfunctionalized quantum dots (QDs) in 5:1 ratio. QDs Encapsulated polystyrene microcapsules were characterized by fluorescence microscopy. Likewise Poly ε-caprolactone microreactors were prepared by micro-volcanic rupture of freeze dried microspheres synthesized using emulsification of polymer with aqueous Poly vinyl alcohol and freezed with liquid nitrogen. Microreactors were examined with Field Emission Scanning Electron Microscope for size and morphology. Current study is an attempt to create hollow polymer particles which can be employed for microencapsulation of nanoparticles and drug molecules.

Keywords: FE-SEM, Microreactors, Microvolcanic rupture, Poly (ε-caprolactone), Polystyrene

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
155 Saturated Gain of Doped Multilayer Quantum Dot Semiconductor Optical Amplifiers

Authors: Omar Qasaimeh

Abstract:

The effect of the number of quantum dot (QD) layers on the saturated gain of doped QD semiconductor optical amplifiers (SOAs) has been studied using multi-population coupled rate equations. The developed model takes into account the effect of carrier coupling between adjacent layers. It has been found that increasing the number of QD layers (K) increases the unsaturated optical gain for K<8 and approximately has no effect on the unsaturated gain for K ≥ 8. Our analysis shows that the optimum ptype concentration that maximizes the unsaturated optical gain of the ground state is NA Ôëê 0.75 ×1018cm-3 . On the other hand, it has been found that the saturated optical gain for both the ground state and the excited state are strong function of both the doping concentration and K where we find that it is required to dope the dots with n-type concentration for very large K at high photon energy.

Keywords: doping, multilayer, quantum dot optical amplifier, saturated gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
154 Entanglement-based Quantum Computing by Diagrams of States

Authors: Sara Felloni, Giuliano Strini

Abstract:

We explore entanglement in composite quantum systems and how its peculiar properties are exploited in quantum information and communication protocols by means of Diagrams of States, a novel method to graphically represent and analyze how quantum information is elaborated during computations performed by quantum circuits. We present quantum diagrams of states for Bell states generation, measurements and projections, for dense coding and quantum teleportation, for probabilistic quantum machines designed to perform approximate quantum cloning and universal NOT and, finally, for quantum privacy amplification based on entanglement purification. Diagrams of states prove to be a useful approach to analyze quantum computations, by offering an intuitive graphic representation of the processing of quantum information. They also help in conceiving novel quantum computations, from describing the desired information processing to deriving the final implementation by quantum gate arrays.

Keywords: Diagrams of states, entanglement, quantum circuits, quantum information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
153 A Programmer’s Survey of the Quantum Computing Paradigm

Authors: Philippe Jorrand

Abstract:

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.

Keywords: Quantum information processing, quantum algorithms, quantum programming languages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
152 Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures

Authors: Hema Sandhya Jagarlamudi, Mousumi Saha, Pavan Kumar Jagarlamudi

Abstract:

The use of Quantum dots is a promising emerging Technology for implementing digital system at the nano level. It is effecient for attractive features such as faster speed , smaller size and low power consumption than transistor technology. In this paper, various Combinational and sequential logical structures - HALF ADDER, SR Latch and Flip-Flop, D Flip-Flop preceding NAND, NOR, XOR,XNOR are discussed based on QCA design, with comparatively less number of cells and area. By applying these layouts, the hardware requirements for a QCA design can be reduced. These structures are designed and simulated using QCA Designer Tool. By taking full advantage of the unique features of this technology, we are able to create complete circuits on a single layer of QCA. Such Devices are expected to function with ultra low power Consumption and very high speeds.

Keywords: QCA, QCA Designer, Clock, Majority Gate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
151 A Quantum Algorithm of Constructing Image Histogram

Authors: Yi Zhang, Kai Lu, Ying-hui Gao, Mo Wang

Abstract:

Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.

Keywords: Quantum Image Representation, Quantum Algorithm, Image Histogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
150 Unconditionally Secure Quantum Payment System

Authors: Essam Al-Daoud

Abstract:

A potentially serious problem with current payment systems is that their underlying hard problems from number theory may be solved by either a quantum computer or unanticipated future advances in algorithms and hardware. A new quantum payment system is proposed in this paper. The suggested system makes use of fundamental principles of quantum mechanics to ensure the unconditional security without prior arrangements between customers and vendors. More specifically, the new system uses Greenberger-Home-Zeilinger (GHZ) states and Quantum Key Distribution to authenticate the vendors and guarantee the transaction integrity.

Keywords: Bell state, GHZ state, Quantum key distribution, Quantum payment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
149 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
148 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
147 On Quantum BCH Codes and Its Duals

Authors: J. S. Bhullar, Manish Gupta

Abstract:

Classical Bose-Chaudhuri-Hocquenghem (BCH) codes C that contain their dual codes can be used to construct quantum stabilizer codes this chapter studies the properties of such codes. It had been shown that a BCH code of length n which contains its dual code satisfies the bound on weight of any non-zero codeword in C and converse is also true. One impressive difficulty in quantum communication and computation is to protect informationcarrying quantum states against undesired interactions with the environment. To address this difficulty, many good quantum errorcorrecting codes have been derived as binary stabilizer codes. We were able to shed more light on the structure of dual containing BCH codes. These results make it possible to determine the parameters of quantum BCH codes in terms of weight of non-zero dual codeword.

Keywords: Quantum Codes, BCH Codes, Dual BCH Codes, Designed Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
146 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
145 Algebraic Quantum Error Correction Codes

Authors: Ming-Chung Tsai, Kuan-Peng Chen, Zheng-Yao

Abstract:

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of quantum codes are classified according to the relation of the codeword operators and some initial quantum state. By linking the unitary Lie algebra with the additive group, the classical correspondences of some of these quantum codes can be rendered.

Keywords: Quotient-Algebra Partition, Codeword Spinors, Basis Codewords, Syndrome Spinors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
144 An Authentication Protocol for Quantum Enabled Mobile Devices

Authors: Natarajan Venkatachalam, Subrahmanya V. R. K. Rao, Vijay Karthikeyan Dhandapani, Swaminathan Saravanavel

Abstract:

The quantum communication technology is an evolving design which connects multiple quantum enabled devices to internet for secret communication or sensitive information exchange. In future, the number of these compact quantum enabled devices will increase immensely making them an integral part of present communication systems. Therefore, safety and security of such devices is also a major concern for us. To ensure the customer sensitive information will not be eavesdropped or deciphered, we need a strong authentications and encryption mechanism. In this paper, we propose a mutual authentication scheme between these smart quantum devices and server based on the secure exchange of information through quantum channel which gives better solutions for symmetric key exchange issues. An important part of this work is to propose a secure mutual authentication protocol over the quantum channel. We show that our approach offers robust authentication protocol and further our solution is lightweight, scalable, cost-effective with optimized computational processing overheads.

Keywords: Quantum cryptography, quantum key distribution, wireless quantum communication, authentication protocol, quantum enabled device, trusted third party.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
143 Nonplanar Ion-acoustic Waves in a Relativistically Degenerate Quantum Plasma

Authors: Swarniv Chandra, Sibarjun Das, Agniv Chandra, Basudev Ghosh, Apratim Jash

Abstract:

Using the quantum hydrodynamic (QHD) model the nonlinear properties of ion-acoustic waves in are lativistically degenerate quantum plasma is investigated by deriving a nonlinear Spherical Kadomtsev–Petviashvili (SKP) equation using the standard reductive perturbation method equation. It was found that the electron degeneracy parameter significantly affects the linear and nonlinear properties of ion-acoustic waves in quantum plasma.

Keywords: Kadomtsev-Petviashvili equation, Ion-acoustic Waves, Relativistic Degeneracy, Quantum Plasma, Quantum Hydrodynamic Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
142 Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space

Authors: Swarniv Chandra, Parthasona Maji, Basudev Ghosh

Abstract:

The nonlinear self-interaction of an electrostatic surface wave on a semibounded quantum plasma with relativistic degeneracy is investigated by using quantum hydrodynamic (QHD) model and the Poisson’s equation with appropriate boundary conditions. It is shown that a part of the second harmonic generated through self-interaction does not have a true surface wave character but propagates obliquely away from the plasma-vacuum interface into the bulk of plasma.

Keywords: Harmonic Generation, Quantum Plasma, Quantum Hydrodynamic Model, Relativistic Degeneracy, Surface waves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
141 Implementation of Quantum Rotation Gates Using Controlled Non-Adiabatic Evolutions

Authors: Abdelrahman A. H. Abdelrahim, Gharib Subhi Mahmoud, Sherzod Turaev, Azeddine Messikh

Abstract:

Quantum gates are the basic building blocks in the quantum circuits model. These gates can be implemented using adiabatic or non adiabatic processes. Adiabatic models can be controlled using auxiliary qubits, whereas non adiabatic models can be simplified by using one single-shot implementation. In this paper, the controlled adiabatic evolutions is combined with the single-shot implementation to obtain quantum gates with controlled non adiabatic evolutions. This is an important improvement which can speed the implementation of quantum gates and reduce the errors due to the long run in the adiabatic model. The robustness of our scheme to different types of errors is also investigated.

Keywords: Adiabatic evolutions, non adiabatic evolutions, controlled adiabatic evolutions, quantum rotation gates, dephasing rates, master equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704