
Toward Understanding and Testing Deep Learning
Information Flow in Deep Learning-Based Android

Apps
Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract—The widespread popularity of mobile devices and the
development of artificial intelligence (AI) have led to the widespread
adoption of deep learning (DL) in Android apps. Compared with
traditional Android apps (traditional apps), deep learning based
Android apps (DL-based apps) need to use more third-party
application programming interfaces (APIs) to complete complex
DL inference tasks. However, existing methods (e.g., FlowDroid)
for detecting sensitive information leakage in Android apps cannot
be directly used to detect DL-based apps as they are difficult to
detect third-party APIs. To solve this problem, we design DLtrace,
a new static information flow analysis tool that can effectively
recognize third-party APIs. With our proposed trace and detection
algorithms, DLtrace can also efficiently detect privacy leaks caused
by sensitive APIs in DL-based apps. Additionally, we propose two
formal definitions to deal with the common polymorphism and
anonymous inner-class problems in the Android static analyzer. Using
DLtrace, we summarize the non-sequential characteristics of DL
inference tasks in DL-based apps and the specific functionalities
provided by DL models for such apps. We conduct an empirical
assessment with DLtrace on 208 popular DL-based apps in the
wild and found that 26.0% of the apps suffered from sensitive
information leakage. Furthermore, DLtrace outperformed FlowDroid
in detecting and identifying third-party APIs. The experimental
results demonstrate that DLtrace expands FlowDroid in understanding
DL-based apps and detecting security issues therein.

Keywords—Mobile computing, deep learning apps, sensitive
information, static analysis.

I. INTRODUCTION

DEEP Learning (DL) techniques have been widely

applied into various applications, including speech

recognition [1], images classification [2], and natural language

processing [3]. With model compression technique [4]

allowing DL models to complete offline inference tasks on

mobile devices without degrading performance, a large number

of deep learning based Android apps (DL-based apps) have

emerged, which use DL techniques to complete a variety of

complex tasks. These DL-based apps are usually applied in

fields involving user-sensitive information, such as finance [5],

traffic and healthcare [6]. With the widespread emergence of

deep learning-based apps, user privacy and security concerns

have become increasingly prominent. This also highlights the

need to detect sensitive data leaks in DL-based apps. However,

researches on DL-based apps only focus on the essential

Jie Zhang, Tieyi Zhang, Xiaohong Li* and Zhiyong Feng are with the
College of Intelligence and Computing, Tianjin University, China (*e-mail:
xiaohongli@tju.edu.cn).

Qianyu Guo is with Zhongguancun Laboratory, Beijing, P.R. China (e-mail:
guoqy@zgclab.edu.cn).

characteristics of DL-based apps [7], information flow analysis

and automatic identification of model functionnalities in

DL-based apps have not been investigated in depth.

The taint analysis is an information flow analysis technique

that converts vulnerability detection problems into the problem

of tracking the flow of user-sensitive data to malicious sink

APIs. Therefore, taint analysis is effective to detect sensitive

information leakage. The current detection techniques can

be divided into dynamic and static detection technologies

based on whether the program is running during detection.

Compared to dynamic detection, static analysis ensures the

scalability of profiling apps and traverses all possible execution

paths. Automated static taint analysis tools for traditional

apps (e.g., FlowDroid [8] which based on soot) is exhibit

limitations, such as the inability to track faulty data leakages

between third-party apis, performance, and efficiency. The

newly proposed SEEKER [9] extended FlowDroid and defined

sensor application programming interfaces (APIs) as sources

to report privacy leaks, but it does not generalize sensitive data

source APIs to general APIs used in DL-based apps, there

is still a lack of DL oriented sensitive source and sink apis

recognition technique in current research communities. To fill

this research gap, in this study, we applied static taint analysis

to the detection of DL-based apps.

The research community has demonstrated that numerous

challenges are faced in the construction of a reliable and

highly accurate static Android analyzer [10], DL-based apps

are Android apps, therefore, considering the characteristics

of Android [11], Java object-oriented characteristics must

be taken into account when analyzing DL-based apps. In

particular, the final state of the program can only be

determined during the execution process for problems, such

as dynamic code loading and polymorphism. Therefore, static

analysis techniques often require auxiliary analysis techniques,

such as alias analysis.

Given the above challenges and the status of DL-based

apps, we design and implement an automated information flow

analysis prototype tool DLtrace. DLtrace is applied to detect

polluted access from source to sink APIs during DL inference

tasks based on an understanding of the information flow

characteristics in DL-based apps. We use the global control

flow graph (CFG) of a DL-based app as an interface for the

information flow analysis based on AndroGuard. We collect

208 DL-based apps to evaluate the detection performance of

DLtrace and FlowDroid. The experiments demonstrate that

DLtrace is superior to FlowDroid in the detection of sensitive

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

171International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

data leakage in DL-based apps.

The main contributions of this paper are as follows:

• This is a study to provide an understanding of the DL

inference regarding the information flow in DL-based

apps. We propose that sets of APIs can verify the DL

model functionality in DL-based apps. For simplicity, we

refer to these APIs as “magic APIs”.

• We recollect sensitive source and sink APIs to cover the

DL inference stage.

• Owing to the limited ability of FlowDroid to identify

and detect third-party APIs, our DLtrace tool significantly

outperforms FlowDroid in detecting sensitive data

leakage caused by third-party APIs that support DL

techniques.

II. RELATED WORK

This section discusses the related work from two aspects:

1) the taint analysis for traditional apps, and 2) the research

for DL-based apps.

A. Taint Analysis for Traditional App

Taint analysis techniques can be combined with both

dynamic and static methods. The dynamic analysis method

detects the behavior and data in the apps real-timely [12].

TaintDroid [13] is a dynamic analysis method that tracks

and marks multiple sensitive sources. Nevertheless, TaintDroid

lacked support for new versions of apps based on Android

Runtime (ART). The emergence of TaintART [14] has solved

this problem. TaintART redesigned the dynamic information

flow tracking method supporting ART.

Compared with the dynamic detection method, the static

analysis can cover all the code and paths of the program

without execution and detect the error code segment

or malicious features. However, static analysis is often

ineffective in detecting apps using dynamic code loading or

fuzzy technologies such as encryption [15]. FlowDroid [8]

is a domain-sensitive, object-sensitive, context-sensitive,

flow-sensitive data flow analysis tool, but it cannot analyze

the ICC.

DroidSafe [16] supported ICC and the object-sensitive,

and created a virtual function for each component, but did

not support flow-sensitive. A similar tool to DroidSafe is

IccTA [17]. Amandroid [18] is also a static analysis platform,

which can detect privacy data leakage, data injection, and

API misuse. Amandroid implemented the alias analysis, but

its comprehensive alias analysis is very costly.

Most static analyzers are based on the famous analysis

framework soot [19] extension. Since the APIs support DL

techniques are primarily the third-party APIs, soot cannot

represent them as intermediate representation (IR), limiting

the ability of detection tools to analyze the information flow

in the DL inference process in DL-based apps.

B. Research for DL-Based App

With the great success of AI, Xu et al. [7] first studied the

application of DL technique in smartphones, many mobile DL

frameworks have been proposed [20]–[22]. Since integrating

DL frameworks into apps is more efficient than integrating DL

frameworks into the cloud and is not limited by network speed,

more and more apps integrate DL techniques. In this situation,

the security problems (e.g., evasion, poisoning, and stealing)

of DL models in DL-based apps inevitably arise [23]–[28].

There also emerge some researches focusing on the model

security in DL-based apps. For example, Li et al. [29] proposed

a model watermarking method, and the watermark is injected

and hidden in the DL model. At the same time, the watermark

verification avoidance technique [30] also arises. Another

concurrence work [31] focused on the robustness of the

DL models in DL-based apps. By identifying highly similar

pre-trained DL models from TensorFlow Hub, they carried out

adversarial attacks on DL models. Sun [32] studied the risk

and cost of DL model leakage, and found that there is a case

that the DL-based apps will trigger the DL model download

when running. There is a risk that the plaintext of models will

be stolen in memory, even if the DL models are encrypted.

The above work focus on the security of the DL model itself.

Different from them, this work pays attention to the security

risks (e.g., sensitive data leakage) in the full execution stack

when DL-based apps perform DL inferences.

III. DLTRACE

In this section, we propose a static detection tool called

DLtrace for DL-based apps. Fig. 1 shows the overall working

process of DLtrace, which mainly consists of two stages.

The first stage carries out data processing, and the second

stage completes the information flow analysis through two

algorithms designed in DLtrace. At last, the output of the

DLtrace is an information flow analysis report and a sensitive

information leakage detection report.

A. Data Collection

This subsection starts with the dataset collecting methods,

including DL-based apps collection and sensitive source and

sink identification.

DL-based apps Collection: To study the quality of DL-based

apps in the current market, we crawled and collected a host

of popular Android apps for further research and testing. To

that end, we took a market snapshot in March 2021. The

preliminary indicator of the collected candidate Android apps

is the number of downloads. We downloaded the top 500

Android apps in each category, and the latest versions of the

Android apps were downloaded from Google Play directly.

Therefore, we gathered a total of 19306 candidate Android

apps. To filter out DL-based apps from the above 19,306

Android apps, we used the method proposed in previous

work [7]: detecting feature binary files in apps. Since the

DL technique applied on the mobile terminal relies on the

underlying libraries, the apps integrated with the famous AI

frameworks will have the corresponding feature binary files.

By using the static filtering approach, we determined 208

DL-based apps, clustered into 29 blocks by category tags in

Google Play, and the same category apps in the Section IV-B

used as similar research targets.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

172International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

Control Flow Graph

Node

Edge

Clean
&

Encode

AndroGuard

Data Process Information Flow Analysis

DL-based
APPs

DL-based
APPs

D

DL-related
APIs

Trace Algorithm

Input DLtrace Reports

Sensitive Leakage

Source_Id Sink_Id
Substage
Translated Path

Information Flow

Starting Point Sets
Ending Point Sets
Translated Path

</>

Detection Algorithm

Sensitive Leakage

Source_Id Sink_Id
Substage
Translated Path

Control Flow Graph

NodeNode

EdgeEdge

CleanC
&

Encoden

AndroGuardu

Fig. 1 Overview of DLtrace

Sensitive Source and Sink Identification: Sensitive sources

and sinks need to be identified as DL-related API set to

perform taint analysis. The sources refer to APIs related to DL

inference tasks, such as APIs for initial loading data of user

images into face detectors and APIs for constructing detectors,

and sinks refer to APIs that perform dangerous operations,

such as database storage, network sending data, and other APIs

that abnormally transfer inference data and inference results.

As there are no tools that can automate the identification of

user-sensitive information APIs in the inference phase of DL

tasks. This paper uses two ways to enrich the source and sink

collections: Tracebacking the app information flow by DLtrace

(the details of the trace Algorithm 1 are in the following

section Section III-C); selecting from the Android developers’

documentation. At last, we recollect 72 sources and 66 sinks,

including first-party and third-party APIs. The selected set also

includes the first-party APIs because of these APIs (e.g., APIs

in the android.Graphics.BitmapFactory package process and

pass image data before inference) are closely related to the

DL inference processing.

B. Data Processing

The data processing phase focuses on extracting the CFG in

the apps and pre-processing the CFG. To simplify, we conduct

embedding for CFG to facilitate further information flow

analysis, specifically cleaning and encoding to embedding. We

still use the terminology of CFG in the following part. The

CFG contains the raw data of nodes and calls. Data cleaning

refers to processing the attribute information stored by each

original node to ensure the readability of the output analysis

report. Data encoding refers to all the nodes in the CFG, and

encoded pairwise nodes also represent a call. The encoded

node is remapped back before outputting the reports. In order

to ensure the correctness of the experiment, CFG does not

filter external node connections and multiple calls. Since the

encoded nodes are unique, the parallel edges in the multigraph

generated by the node calling relationship do not affect the

experiment. Thus, the global CFG of an app is a directed

multigraph. We define it in Definition 1.

Definition 1 (CFG): A CFG is a directed multigraph

CFG = (N,C), where N is the set of nodes and C is the set

of calls.

Definition 2 (Node): In a CFG, a node is defined as a

four-tuple of attributes N = 〈p, n,m, r〉, where p is the

package name, n is the node name, m is the parameter list,

and r is the return value (which can be empty) of the N . The

DL-based app developers often obfuscate the components of

Algorithm 1: Tracing algorithm for information flow

Input : A=<T,P,S>: Extracting DL-based app Information
Output: R: Analysis Report

1 T := tracePoints(A);
2 P := nodeId(A);
3 S := edgeId(A);
4 for l ← 0 to Len(S) do
5 W := addEdge(S[l]);

6 for i ← 0 to Len(T) do
7 for p ← 0 to Len(P) do
8 if shortestPath(P[p],T[i],W) then
9 begin[m] ← P [p];

10 m := m+ 1;
11 � (T[i],P[q],W) collecting ending points
12 p := p+ 1;

13 for x ← 0 to m do
14 simplePath(begin[x], T [i],W);
15 translatePath(simplePath);
16 x := x+ 1;

17 m ← 0;
18 i := i+ 1;

19 return R;

the four-tuple, and the four attributes all have a probability of

being obfuscated.

C. Information Flow Analysis

To perform information flow analysis, we design two

algorithms with different focuses. The first algorithm can

perform single-point up and down backtracking to generate

information flow paths, which is named trace algorithm. Based

on the trace algorithm and relying on the idea of taint analysis,

the second algorithm determines sensitive information leakage

during the data flow in the information flow, designated as

detection algorithm. Trace algorithm is executed firstly to

study the data processing process of the DL inference phase.

Algorithm 1 is a single-point tracing algorithm designed to

describe the complete information flow of the DL inference

stage in DL-based apps. Specifically, for a node NP , this

node may lie in one substage of the the DL inference tasks

such as: data preprocessing, inference detector constructing or

inference result processing. And in the case of having only one

node (especially an input node or an output node) of a substage

in the information flow, DLtrace takes NP as the center to

detect longer reachable paths (Nmax_b, . . . , NP , . . . , Nmax_e).
The algorithm uses A (the information set extracted from

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

173International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

Algorithm 2: Detection algorithm for information

leakage path

Input : D = 〈I, P, S〉: Extracting DL-based app
Information

Output: R: Analysis Report

1 I := detectPoints(D);
2 P := nodeId(D);
3 S := edgeId(D);
4 for i ← 0 to Len(I) do
5 if getType(I[i]) == START then
6 start[t] ← I[i];
7 t := t+ 1;

8 else
9 end[p] ← I[i];

10 p := p+ 1;

11 for j ← 0 to Len(S) do
12 W := addEdge(S[j]);

13 for m ← 0 to t do
14 for n ← 0 to p do
15 if hasPath(start[m], end[n],W) then
16 simplePath(start[m], end[n]);
17 translatePath(simplePath);

18 return R;

the app) as input, in the initial state, data processing should

determine the T , P and S values in A (P refers to the

encoding set of the N , S refers to the encoding set of the

C, T is the encoding set of the nodes {N1, . . . , Nn} that will

be generated their information flow path), and the output is

a report of the information flow derived with the nodes in

T . In Algorithm 1, first the global CFG is recovered using

the set S before the information flow analysis, adding the

edge information to graph W through the traversal of S.

Then the algorithm determines the starting and ending point

sets of the shortest paths with Ni where i ∈ (1 . . . n), the

idea of shortest path which is often used in graph algorithm

is used to solve the starting point set and ending point set.

To calculate the upstream derived paths with the starting

set and the downstream derived paths with the ending set,

the reachable paths derived from nodes adopts the idea of

simple path solution in graph algorithm. Then it removes the

duplicated subpaths and integrates the encoded paths, and uses

the simplePath function to represent (Line 14). Finally, the

encoded paths are translated and output to the information

flow analysis report R. Line 8 of the algorithm is the starting

point set judgment formula of Ni, and the formula to collect

ending point set is (T [i] , P [q] ,W).
We design Algorithm 2 that directly determines a valid

information flow path between pairwise points. Algorithm 2

will be used to perform sensitive information leakage

detection. The input of the algorithm is the information

extracted from the app, and the output is the result of

determining the existence of paths between the test pairwise

sets and all valid paths. In the input, we use D to denote the set

of information extracted from the app, S is the encoding set of

the C, and P is the encoding set of the N . I is the encoding

set of the nodes to be predicted {N1, . . . , Nn}, and we need

to assign a type_label(type_lable ⊆ {START,END}) to

each prediction node. First, we cluster the set of test points

by type labels through Line 5 of the algorithm. This step

is to classify the input set of test points I . The following

algorithm is to determine all connections from the START (as

the source point) to END (as the sink point). Then the global

CFG is recovered. The data connectivity between all pairwise

points is determined by Line 15. In general, the algorithm

detects the reachability between start [m] and end [n] in

the W , if there exists at least one sequence of nodes from

node start [m] to end [n], start [m] = v0, . . . , vn = end [n]
where vk ∈ N (0 ≤ k ≤ n ∧ d (start[m], end[n]) > 0) and

d represents the length of the directed path in CFG, then

the simplePath between start [m] to end [n] are translated

Line 17, the output of Algorithm 2 is the sensitive information

leakage detection report R.

IV. EVALUATION AND RESULTS

DLtrace is a static tracing tool for information flow

based on taint analysis technique programmed with python.

To demonstrate the effectiveness and efficiency of DLtrace,

we design experiments to answer the following 3 research

questions:

• RQ1: How useful and effective is DLtrace in helping

understand the DL information flow within DL-based

apps?

• RQ2: How useful is DLtrace in helping detect the privacy

leakage issues in DL-based apps?

• RQ3: What kind of factor affect the performance of

DLtrace?

A. Experimental Setups

All experiments were carried out on a PC with an

Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 16.0 GB

RAM, Microsoft Windows 11, PyCharm Community Edition

2021.2.1.Ink and python 3.9 Interpreter.

B. Model Functionality Identification with DLtrace (RQ1)

In DL-based apps, DL models are only a part of the

functionalities of the apps. The core functionality of the apps

is supported through the DL inference results. The reasoning

results of DL models collaborate and exchange information

with other transaction processing modules. In other words,

there are functional differences between the tasks of the

DL models and other transaction processing modules in the

DL-based apps. At present, most of the DL models are

embedded in the DL-based apps in the form of binary, and

it is difficult to directly obtain the DL models in the apps.

Although the existing research on the stealing DL models,

we find that the structure of the models can be obtained

intuitively after stealing, but the real function of the models

still needs the cooperation of expert knowledge, and different

parameters configuration and input also make the DL models

play different functionalities. Therefore, without obtaining the

models in DL-based apps, verifying what services the DL

models provide for DL-based apps through the information

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

174International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

TABLE I
THE RESULTS OF MODEL FUNCTIONALITY IDENTIFY

Category #Fun Identification Category #Fun Identification

Fields DLtrace Fields DLtrace

SHOPPING 5 47.1% 94.1% TOOLS 10 72.2% 66.7%
FINANCE 3 11.8% 94.1% SOCIAL 6 20.8% 91.7%
PHOTOGRAPH 2 61.3% 74.2% MAPS 10 46.2% 77.0%
COMMUNICATION 4 73.3% 86.7% TRAVEL 9 42.9% 92.9%
MEDICAL 1 100% 100% HEALTH 2 0.0% 100%

1 Category refers to the category tags in Google Play; #Fun refers to the number of the
detected DL model functionalities in this category based on DLtrace and magic APIs;
Identification is the identification rate of DL model functionality.

flow is challenging. In order to identify the functionalities of

the DL models, we set up the experiment, which process and

results are as follows.

Firstly, exerting statistical experiments to collect magic

APIs. The task of DL models to complete offline inference

tasks is that in the process of interaction between DL models

and DL-based apps, DL-based apps transmit the data (e.g. a

picture data) to DL models for inference, and the inference

results of the DL models are fed back to DL-based apps.

When analyzing the information flow of DL models inference

process in various DL-based apps, we find that DL-based

apps with similar functionalities have similar information flow.

Based on this finding, we summarize the APIs from the

information flow, take the high frequency APIs as the magic

APIs that can help identify the functionalities of the DL

models, and establish the mapping relationship between the

functionalities of the models and the magic APIs. In order to

display magic APIs, according to the data processing in the

information flow, we divide the information flow of the DL

models inference task whole process into three parts: preparing

data, constructing inference detector, and processing inference

results. In order to make our statistical magic APIs locate in

the inference stage of DL-based app, we start from meta APIs

in each stage. We collect some meta APIs that support DL

inference tasks to form a fundamental corpus. These APIs are

defined in ML suites provided by official websites [33]–[35]

with open-source documents of DL techniques. DLtrace uses

Algorithm 1 to extract the information flow through these meta

APIs in DL-based apps automatically, the APIs related to the

DL model inference tasks are filtered from the information

flow of the meta APIs, and added to the meta APIs. The

meta APIs are continuously enriched in the iterative process.

From the corpus, we perform the further statistical screening

manually, the high-frequency APIs in the corpus are called

magic APIs that can help identify DL model functionalities.

Meanwhile, we further conduct comparative experiments

with the previous method proposed by Xu et al. [7] they

manually determine the functionality of the DL model based

on the official description of the released apps. According to

their method, we count the description fields of apps about

DL techniques in Google Play. The two experimental results

of this part are shown as follows.

By analyzing 208 DL-based apps, we can determine 15

categories functionalitise of 15 DL models, and summarize

that the total number of magic apis is 173. We find

that the category of TOOLS DL-based apps contains such

speech recognition, speech synthesis, and machine translation

TABLE II
MAGIC APIS IN THE CATEGORY OF FINANCE DL-BASED APPS

Model Functionality Magic API Subtask

Face Detection

confirmed
Data Processingupload∗

fromByteArray

getFaceDetector Detector Constructing

detectInImage Inference Results Processing

Barcode Detection

invoke
Data Processing

initializeBarcodeDetector

getVisionBarcodeDetector Detector Constructing

detectInImage Inference Results Processing

Text Recognition

onPictureCaptured
Data ProcessingDocumentDetectionFrame

getMRZDetector

getOnDeviceTextRecognizer

Detector Constructing
getPersistenceKey
FirebaseVisionTextRecognizer
get&put

processImage
Inference Results Processing

checkArgument

1 ∗ represents the similar APIs, such as uploadDocumentForValidation, uploadSelfie,
uploadSelfieForValidation and uploadLivePhoto.

DL models; in the category of SHOPPING apps contains

image recognition, and intelligent recommendation models;

the image segmentation and other DL models are contained

in COMMUNICATION apps; MAP_AND_NAVIGATION apps

include object recognition and estimated time of arrival

models; the models functionalities verified in other categories

of DL-based apps are shown in Table I (with limited space,

we only show 10 categories). Taking the FINANCE DL-based

apps as an example, during the information flow analysis, we

extract APIs that appear frequency more than 15% in the DL

inference stage, and these APIs are not confused as partial

magic APIs shown in Table II.

We compare the above two ways to identify the

functionalities of DL models, and take FINANCE apps as

an example. Table III shows the statistics: the FINANCE
category includes 17 DL-based apps, 88.2% (15/17) of which

have no fields about DL techniques in official descriptions.

With the help of magic APIs, in DLtrace identified results,

there are 8 apps using face detection models, 13 apps using

the barcode detection, and 6 apps using the text recognition

models. Among them, lguplus.smartotp app has been seriously

confused in the information flow of the DL inference stage,

therefore DLtrace cannot judge. Compared with the mean

value that identifying the DL model functionality with official

text representation, the ability of DLtrace to determine the

FINANCE apps (at least one DL model is used) is 94.1%

(16/17). The rate of the two approaches for identifying DL

model functionalities in other categories of DL-based apps is

shown in Table I.

Answer to RQ1: The collected magic APIs provide a basis

for identifying the functionality of DL models in DL-based

apps, and prove the usefulness of DLtrace in understanding the

DL information flow during inference. Currently, determining

the model functionality by the functional descriptions in the

app market (i.e., Google Play) is still unsatisfactory, because

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

175International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

TABLE III
THE RESULTS OF DETERMINING MODEL FUNCTIONALITIES COMPARISON

BETWEEN DLTRACE AND TEXT REPRESENTATION

DL-based Apps DLtrace Analysis Description Fields

atws.app

barcode detection No description about DL

shinhan.foreignerbank.app
cz.rb.app.smartphonebanking�

ch.sympany.clientporta�

paywaywallet
wit.android.bcpBankingApp�

io.cex.app.prod
face detection No description about DLfi.danskebank.mobilepay

dk.danskebank.mobilepay�

worldremit.android

No description about DL
bitx.android.wallet face detection
ripio.android barcode detection
medan.app.android text recognition
mmoney.wallet
android.barclaysmobilebanking barcode detection Biological feature detection

lguplus.smartotp serious confusion Facial certification services

wooribank.smart.mwib� barcode detection
No description about DL

text recognition

1 � indicates that in the DL-based app uses the second party APIs to complete
the DL inference task, it means that these APPs do not use the third-party APIs
that provided by Google and other companies to complete the DL inference
task, but use the self-defined APIs.

the description of non-core functions is generally omitted

in official app descriptions. By performing the information

analysis in the apps, DLtrace is more effective in identifying

the model functionalities.

From the results of RQ1, it can be observed that DL

techniques in mobile devices are applied to safety- or

security-critical fields, such as financial, and even medical

care. These fields usually involve much privacy-sensitive

information. Therefore, we must pay attention to detecting the

leakage of sensitive information in DL-based apps, particularly

during the DL inferencing.

C. Detection of Privacy Leakage with DLtrace (RQ2)

In this section, we utilize the idea of taint analysis

to perform sensitive information leakage detection in 208

DL-based apps. Similar to FlowDroid [8], DLtrace is also

designed as a general method. Configuring the DL-related API

set that manipulates user-sensitive information to DLtrace and

FlowDroid. The same DL-related API set will limit DLtrace

and FlowDroid to the same test range.

DLtrace extracts all the source and sink APIs used in

each DL-based app as the test point set I , calling the

detection algorithm to validate. The details of the compared

experimental results are below.

In Fig. 2, the leaked app refers to the DL-based app that

is detected to have at least one pair leak. DLtrace can detect

data leakage in 54 apps, such as mmoney.wallet app is detected

with 11 pairwise sensitive data leakage. FlowDroid detects 39

apps are leaked apps, the largest number of detected sensitive

data leakage pairs is 12 in an app. Simultaneously, in Fig. 5(b),

DLtrace and FlowDroid both detect leaks in 9 apps, and 18

pairs of leaks be detected together.

The Leak Number is the total leakage pairs, DLtrace in

208 apps report a gross of 161 sensitive data leak routes, and

FlowDroid detects 105 leakage paths. FlowDroid shows poor

detection performance due to its limited ability to identify

0

33

66

99

132

165

Leaked App Leak Number 1st Party Source 3rd Party Source 1st Party Sink Source Category Sink Category

1818

105

25

80

105

39

68

161
153

8

161

54

DLtrace
FlowDroid

Fig. 2 The details of the detecting sensitive data leakage

PHOTOGRAPHY(31)
SOCIAL(24)

LIFESTYLE(8)
TRAVEL_AND_LOCAL(14)

TOOLS(18)
COMMUNICATION(15)

SHOPPING(17)
VIDEO_PLAYERS(14)

FINANCE(17)
FOOD_AND_DRINK(2)

PRODUCTIVITY(3)
SPORTS(4)

MAPS_AND_NAVIGATION(13)
ENTERTAINMENT(3)
ART_AND_DESIGN(2)

GAME_ADVENTURE(2)
HEALTH_AND_FITNESS(1)

COMICS(1)
PARENTING(1)
BUSINESS(2)

DATING(1)
MEDICAL(1)

HOUSE_AND_HOME(4)
FAMILY_CREATE(2)

GAME_EDUCATIONAL(1)
MUSIC_AND_AUDIO(2)

BEAUTY(3)

#App Category

0 2 4 6 8 10 12 14

1
1
1
1

1
1
1

1
1

3
2

3
2

2

8
10

1
1
1
1
1
1
1
1
1

2
2
2
2
2

3
2

3
3

4
5

7
4
4

DLtrace
FlowDroid

Fig. 3 Number of the categories in DL-based apps

the third-party APIs. This is because we use Androguard

to extract the global CFG of DL-based apps, and retain all

APIs in the apps for further analysis. FlowDroid is based on

soot expansion, the ability of soot to transfer the intermediate

representation (IR) of the third-party APIs is limited, which

limits the scope of third-party apis that FlowDroid can analyze.

As demonstrated by Fig. 3, our DL-based apps dataset

can be divided into 29 categories, DLtrace detects leaks in

23 categories, FlowDroid covers 16 categories of apps. For

example, there are 17 apps in the category of SHOPPING,

DLtrace detects leakage in three of them, FlowDroid detects

leakage in two apps. DLtrace and FlowDroid do not report

leak in the categories GAME_SPORTS and LIBRARIES, but

this can not explain that these two categories of DL-based apps

are the most secure, because in our dataset only collected one

app respectively.

Details of the proportion of source APIs in the sensitive data

leakage paths, the DLtrace test results shows that the number

of first-party API sources (1st Party Source) among the tested

leaked paths is 8, as we can see from Fig. 4(a) accounting

for 5.0%, and the total number of third-party sources (3rd

Party Source) APIs is 153, accounting for 95.0%. In contrast,

80 first-party sources are detected by FlowDroid, and 25

third-party sources, account for 76.0% (80/105) and 24.0%

(25/105) respectively, as shown in Fig. 4(b).

The categories of source and sink in the test results, DLtrace

detects eight categories of API sources and six categories of

hazard sinks. FlowDroid reports that there are 18 categories

of danger sources and sinks. In Fig. 5(a), the categories of

sources identified by DLtrace alone have 6 in 74 leaked pairs.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

176International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

5%

95%
first-party third-party

(a) DLtrace

76%

24%

first-party third-party

(b) FlowDroid

Fig. 4 The category distribution of api-source detected by DLtrace and
FlowDroid

6(3rd) 1(3rd)

1(1st)

3(3rd)

13(1st)

DLtrace FlowDroid

(a) Source categories

45(143) 9(18) 30(87)

FlowDroidDLtrace

(b) Leaked app and
number

Fig. 5 The details of source APIs, leaked app and number

FlowDroid can detect 13 categories of sources separately and

belong to the first party. The leaks detected by both include

two source APIs. One sink API identified by DLtrace alone

exists in 3 leaked pairs, the API getContentCharSet. It is

interesting that FlowDroid cannot detect the leak caused by

this first-party API. Note that, there are 32 DL-based apps

that FlowDroid cannot analyze, DLtrace detects three apps

that suffered from data leakage.

The third-party sensitive sources detected separately by

DLtrace such createFileFromURI and launchCamera. In these

APIs, regarding the RequestManger class has the interface

to set the image resource, the image data can be a local

connection, a URL, or a Drawable resource id. In a

transmission case shown in Fig. 6, DLtrace detects the leakage

from recognizeImage to the Log API (i.e., Log.v). In the second

substage of DL inferencing, the image provided feeds into

the DL model, but the information is transmitted to log API

illegally.

Answer to RQ2: Compared with FlowDroid, DLtrace is

more effective in detecting sensitive leakage from third-party

APIs with a wider API coverage. Meanwhile, for the

first-party APIs, DLtrace can detect some sensitive leakage

that FlowDroid does not report. Therefore, DLtrace can work

as an extension for FlowDroid on detecting sensitive leakage

in DL-based apps.

D. Bottleneck Factor for DLtrace (RQ3)

This section is in order to seek room for lifting the

performance, java and Android characteristics constraint

SOURCE: 44036 SINK: 8610
Substage: 2

<Lorg/reactnative/camera/tflite/Classifier;->recognizeImage(Landroid/graphics/Bitmap; I)>
<Landroid/util/Log;->v(Ljava/lang/String; Ljava/lang/String;)I>

Fig. 6 A leakage example detected by the DLtrace

TABLE IV
THE OVERVIEW OF CHALLENGES FOR STATIC ANALYZERS

Java DLtrace Android

dynamic code loading Dalvil bytecode
reflection mechanism entry point
native code integration component lifecycle
multi-threading usersystem events
polymorphism inter-component communication(ICC)

the ability of static analyzer. The Table IV shows that

the current static analyzers face main challenges. During

the performance analysis of DLtrace, we find the java

object-oriented inheritance mechanism is the major bottleneck

factor to us, limiting the static analyzers to determine entire

call relationship in the apps. Therefore, we summarized two

enhancement patterns that can help enhance the information

flow analysis. To explain our enhancement patterns in detail,

we first declare the following definitions.

Definition 3 (Enhancement Pattern): Enhancement Pattern

(EP) is a template for information flow auxiliary analysis.

Given the two nodes Na and Nb that have no edge connection

in the CFG, they are not reachable, and two separate

calling sequences {Na = v1, . . . , vi−1} (starting from Na)

and {vi, . . . , vn = Nb} (ending to Nb), if polymorphism or

anonymous inner-class exit between vi−1 and vi. Then an

enhancement pattern between Na and Nb can been represented

as:

Na
s→ Nb, s ∈ (α ∪ β) (1)

Note that, we currently focus on d (vi−1, vi) = 1 because

d > 1 is more complex. Furthermore, we define the iterative

enhancement pattern in Definition 4.

Definition 4 (Iterative EP): If the connection between Na

and Nb requires iteration after a series of enhancement pattern

conversions, it can be represented as an iterative enhancement

pattern Na
s1,...,sn−→ Nb, si ∈ (α ∪ β) i ∈ (1, . . . , n), following

the below definition:(
Na, . . . , Ni−1

s1−→ Ni, . . . , Nj−1
sn−→ Nj , . . . Nb

)
(2)

The details of the two enhancement patterns are as below:

• Polymorphism α: Polymorphism allows different objects

in the same class domain to respond to the same message.

Only at running time can determine the object binding,

and the static analyzer cannot locate the specific call.

• Anonymous internal class (AIC) β: As shown in Fig. 7,

AIC relates to multi-threading and callback, there is no

call relationship between B-function, C, and D-function.

Intuitively, polymorphism is incarnating the method

overload and rewrite. AIC does not require defining a separate

class. It also aims to support polymorphism.

Taking a critical DL-based app for example, as shown

in Fig. 8 the analysis diagram of TensorFlowdetect app,

there are two EP s: α and β. First, calls between APIs have

non-sequential characteristics in the DL inference process,

such as getPixels and fetch APIs, not direct call relationships.

There is mode β between the runInBackguard and run nodes.

The app combines multiple DL models the recognizeImage

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

177International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

A-function{
B-function(new C(c){

 D-function(d){
E-function(e){

x

 Schematic Diagram Writing Format

new parentclass
 {subclass content}

Fig. 7 A schematic diagram and writing format of anonymous internal
classes

EP:α

Detector
Constructing

Result
processing

DL Inference Information Flow

Classifier/
recognizeImage

runInBackground

run()

 EP:βData
Processing

processImage() YoloDetector/
recognizeImage

ObjectDetector/
recognizeImage

MultiBoxDetector/
recognizeImage

ImageClassifier/
recognizeImage

Classifier/
recognizeImage

getPixels

feed

run

fetch

Fig. 8 Two enhancement patterns in the DL-based app TensorflowDetect

interface is defined, and then the recognizeImage API of the

specific model is dynamically bound, which is example of the

EP α.

Answer to RQ3: We summarize two enhancement patterns

that can effectively expand the analysis capability of DLtrace:

the Polymorphism, and AIC. In the future, more advanced

techniques (e.g., alias analysis) will be taken into account to

realize a fully automated pipeline for DLtrace.

V. CONCLUSION

In this paper, we conduct the first empirical assessment to

investigate the information flow in DL-based apps. To facilitate

the assessment, we propose DLtrace, a static analysis tool for

identifying information flow in DL-based apps, as well as a

series of magic APIs to verify the functionality of DL models.

We also expand the source and sink APIs in FlowDroid for

comprehensive evaluation with the taint analysis techniques

in these apps. Through the analysis of 208 popular DL-based

apps collected from Google Play, we compare DLtrace with

FlowDroid and find that DL-based apps are widely exposed

to sensitive information leakage. In addition, DLtrace is more

effective than FlowDroid in detecting these leakages during

DL inference stage. FlowDroid analyzes the bytecode and

configuration files of apps to find potential privacy leaks, either

caused by carelessness or created with malicious intention.

According to the same standard, we report the reachable

paths between sensitive source and sink APIs. In the future,

we will make further detailed analysis, which requires the

cooperation of dynamic analysis technique, and will be our

direction of efforts. Furthermore, these experimental results

also demonstrate the inefficiency of existing security analysis

methods when applied to DL-based apps. New security

analysis methods targeting the characteristics of DL-based

apps are desired. The findings of this study provide valuable

insights to multiple stakeholders in mobile DL ecosystems,

such as developers of DL-based apps and DL researchers.

Although the static analysis for DL-based apps remains in

its early stage, DLtrace is the starting point for evaluating the

security of DL-based apps.

ACKNOWLEDGMENT

This paper was supported by the National Key Research and

Development Program of China (No. 2021YFF1201102).

REFERENCES

[1] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech
recognition using deep neural networks: A systematic review,” IEEE
access, vol. 7, pp. 19 143–19 165, 2019.

[2] Y. Li, “Research and application of deep learning in image recognition,”
in 2022 IEEE 2nd International Conference on Power, Electronics and
Computer Applications (ICPECA). IEEE, 2022, pp. 994–999.

[3] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages
of deep learning for natural language processing,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 2, pp. 604–624,
2020.

[4] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[5] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,”
Statistical science, vol. 17, no. 3, pp. 235–255, 2002.

[6] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 17–32.

[7] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in The World Wide Web Conference,
2019, pp. 2125–2136.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[9] X. Sun, X. Chen, K. Liu, S. Wen, L. Li, and J. Grundy, “Characterizing
sensor leaks in android apps,” in 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 2021,
pp. 498–509.

[10] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, “Static analysis of android apps: A systematic
literature review,” Information and Software Technology, vol. 88, pp.
67–95, 2017.

[11] É. Payet and F. Spoto, “Static analysis of android programs,” Information
and Software Technology, vol. 54, no. 11, pp. 1192–1201, 2012.

[12] F. Tong and Z. Yan, “A hybrid approach of mobile malware detection in
android,” Journal of Parallel and Distributed computing, vol. 103, pp.
22–31, 2017.

[13] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp. 1–29,
2014.

[14] M. Sun, T. Wei, and J. C. Lui, “Taintart: A practical multi-level
information-flow tracking system for android runtime,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 331–342.

[15] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android
malware detection system with ensemble learning,” IEEE Access, vol. 6,
pp. 30 996–31 011, 2018.

[16] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS, vol. 15, no. 201, 2015, p. 110.

[17] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 280–291.

[18] F. Wei, S. Roy, and X. Ou, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” ACM Transactions on Privacy and Security (TOPS),
vol. 21, no. 3, pp. 1–32, 2018.

[19] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), vol. 15, no. 35, 2011.

[20] Google. (2022) TFlite. [Online]. Available: https://www.tensorflow.org/
lite

[21] Facebook. (2022) Caffe2. [Online]. Available: https://caffe2.ai/

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

178International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

[22] Apple. (2022) Core ML. [Online]. Available: https://developer.apple.
com/cn/documentation/coreml/

[23] M. A. Ayub, W. A. Johnson, D. A. Talbert, and A. Siraj, “Model
evasion attack on intrusion detection systems using adversarial machine
learning,” in 2020 54th Annual Conference on Information Sciences and
Systems (CISS). IEEE, 2020, pp. 1–6.

[24] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[25] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” 2017.

[26] S. Shen, S. Tople, and P. Saxena, “Auror: Defending against poisoning
attacks in collaborative deep learning systems,” in Proceedings of the
32nd Annual Conference on Computer Security Applications, 2016, pp.
508–519.

[27] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction {APIs},” in 25th USENIX
security symposium (USENIX Security 16), 2016, pp. 601–618.

[28] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[29] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of dnn,” in Proceedings of the 35th Annual Computer Security
Applications Conference, 2019, pp. 126–137.

[30] D. Hitaj and L. V. Mancini, “Have you stolen my model? evasion attacks
against deep neural network watermarking techniques,” arXiv preprint
arXiv:1809.00615, 2018.

[31] Y. Huang, H. Hu, and C. Chen, “Robustness of on-device models:
Adversarial attack to deep learning models on android apps,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 2021, pp.
101–110.

[32] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your weight (s): A
large-scale study on insufficient machine learning model protection in
mobile apps,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 1955–1972.

[33] (2022) Amazon. [Online]. Available: https://docs.aws.amazon.com/zh\
_cn/personalize/latest/dg/personalize-dg.pdf

[34] (2022) Google. [Online]. Available: https://firebase.google.com/docs/
ml-kit

[35] (2022) Microsoft. [Online]. Available: https://www.microsoft.com/
en-us/ai

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:17, No:3, 2023

179International Scholarly and Scientific Research & Innovation 17(3) 2023 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
3,

 2
02

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
98

3.
pd

f

