Search results for: Organic semiconductor.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 680

Search results for: Organic semiconductor.

380 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: Photocatalytic oxidation process, Formaldehyde (HCHO), Silk fibroin (SF), Titanium dioxide (TiO2).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183
379 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit

Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah

Abstract:

This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.

Keywords: CMOS Process sensor, Process, Voltage and Temperature (PVT) sensor, threshold extractor circuit, Vth extractor circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
378 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State

Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi

Abstract:

Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.

Keywords: Soil organic carbon, horizon, pedon, Akure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
377 Study of the Quality of Surface Water in the Upper Cheliff Basin

Authors: Touhari Fadhila, Mehaiguene Madjid, Meddi Mohamed

Abstract:

This work aims to assess the quality of water dams based on the monitoring of physical-chemical parameters by the National Agency of Water Resources (ANRH) for a period of 10 years (1999-2008). Quality sheets of surface water for the four dams in the region of upper Cheliff (Ghrib, Deurdeur, Harreza, and Ouled Mellouk) show a degradation of the quality (organic pollution expressed in COD and OM) over time. Indeed, the registered amount of COD often exceeds 50 mg/ l, and the OM exceeds 15 mg/l. This pollution is caused by discharges of wastewater and eutrophication. The waters of dams show a very high salinity (TDS = 2574 mg/l in 2008 for the waters of the dam Ghrib, standard = 1500 mg/l). The concentration of nitrogenous substances (NH4+, NO2-) in water is high in 2008 at Ouled Melloukdam. This pollution is caused by the oxidation of nitrogenous organic matter. On the other hand, we studied the relationship between the evolution of quality parameters and filling dams. We observed a decrease in the salinity and COD following an improvement of the filling state of dams, this resides in the dilution water through the contribution of rainwater. While increased levels of nitrates and phosphorus in the waters of four dams studied during the rainy season is compared to the dry period, this increase may be due to leaching from fertilizers used in agricultural soils situated in watersheds.

Keywords: Surface water quality, pollution, physical-chemical parameters, upper Cheliff basin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
376 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: Microbiological analysis, shelf life, transport damage, volatile organic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3079
375 Characterization of Responsivity, Sensitivity and Spectral Response in Thin Film SOI photo-BJMOS -FET Compatible with CMOS Technology

Authors: Hai-Qing Xie, Yun Zeng, Yong-Hong Yan, Jian-Ping Zeng, Tai-Hong Wang

Abstract:

Photo-BJMOSFET (Bipolar Junction Metal-Oxide- Semiconductor Field Effect Transistor) fabricated on SOI film was proposed. ITO film is adopted in the device as gate electrode to reduce light absorption. Depletion region but not inversion region is formed in film by applying gate voltage (but low reverse voltage) to achieve high photo-to-dark-current ratio. Comparisons of photoelectriccharacteristics executed among VGK=0V, 0.3V, 0.6V, 0.9V and 1.0V (reverse voltage VAK is equal to 1.0V for total area of 10×10μm2). The results indicate that the greatest improvement in photo-to-dark-current ratio is achieved up to 2.38 at VGK=0.6V. In addition, photo-BJMOSFET is compatible with CMOS integration due to big input resistance

Keywords: Photo-BJMOSFET, Responsivity, Sensitivity, Spectral response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
374 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
373 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
372 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
371 Rapid Determination of Biochemical Oxygen Demand

Authors: Mayur Milan Kale, Indu Mehrotra

Abstract:

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Keywords: BOD, Four methods, Rapid estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3593
370 Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links

Authors: Moustafa Ahmed, Ahmed Bakry, Safwat W. Z. Mahmoud

Abstract:

We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.

Keywords: Bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259
369 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: Bioelectricity, chemical oxygen demand, microbial fuel cell, sanitary wastewater, wheat starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
368 Nanocrystalline Na0.1V2O5.nH2O Xerogel Thin Film for Gas Sensing

Authors: M. S. Al-Assiri, M. M. El-Desoky, Ahmed A. Ibrahim, M. Abaker, A. A. Bahgat

Abstract:

Nanocrystalline thin film of Na0.1V2O5.nH2O xerogel obtained by sol gel synthesis was used as gas sensor. Gas sensing properties of different gases such as hydrogen, petroleum and humidity were investigated. Applying XRD and TEM the size of the nanocrystals is found to be 7.5 nm. SEM shows a highly porous structure with submicron meter-sized voids present throughout the sample. FTIR measurement shows different chemical groups identifying the obtained series of gels. The sample was n-type semiconductor according to the thermoelectric power and electrical conductivity. It can be seen that the sensor response curves from 130oC to 150oC show a rapid increase in sensitivity for all types of gas injection, low response values for heating period and the rapid high response values for cooling period. This result may suggest that this material is able to act as gas sensor during the heating and cooling process.

Keywords: Sol gel, Thermoelectric power, XRD, TEM, Gas sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
367 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors: Isao Tomita

Abstract:

The detection of environmental gases, 12CO2, 13CO2, and CH4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO2 of a 3-% CO2 gas at 2 μm with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO2 peaks. In addition, the detection of 12CO2 peaks of a 385-ppm (0.0385-%) CO2 gas in the air is made at 2 μm with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH4 in a small area are attempted. For a 100-% CH4 gas trapped in a ∼ 1 mm3 glass container, the absorption peaks of CH4 are obtained at 1.65 μm with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords: Environmental Gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
366 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique

Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue

Abstract:

Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.

Keywords: Atomic layer deposition, tungsten oxide, WO3, two-dimensional semiconductors, single fundamental layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
365 Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device

Authors: K. E. Kaharudin, A. H. Hamidon, F. Salehuddin

Abstract:

Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In order to ensure that the transistor possess a superb turn-off characteristic, the subs-threshold swing (SS) must be kept at minimum value (60-90mV/dec). By utilizing SILVACO TCAD software, an n-channel vertical DG-MOSFET was successfully designed while keeping the sub-threshold swing (SS) value as minimum as possible. From the observation made, the value of sub-threshold swing (SS) was able to be varied by adjusting the height of the silicon pillar. The minimum value of sub-threshold swing (SS) was found to be 64.7mV/dec with threshold voltage (VTH) of 0.895V. The ideal height of the vertical DG-MOSFET pillar was found to be at 0.265 µm.

Keywords: DG-MOSFET, pillar, SCE, vertical

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
364 Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Authors: Hisham M. Abourayana, Nuri A. Zreiba, Abdulkader M. Elamin

Abstract:

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Keywords: Plasma polymerization, potentiodynamic test, Contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
363 Metal-Semiconductor-Metal Photodetector Based On Porous In0.08Ga0.92N

Authors: Saleh H. Abud, Z. Hassan, F. K. Yam

Abstract:

Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.

Keywords: Porous InGaN, photoluminescence, SMS photodetector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
362 High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold

Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos

Abstract:

Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.

Keywords: Ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO2/In2O3 bilayer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
361 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: BI, hybrid, hydrodynamic cavitation, wet air oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
360 Current Starved Ring Oscillator Image Sensor

Authors: Devin Atkin, Orly Yadid-Pecht

Abstract:

The continual demands for increasing resolution and dynamic range in complimentary metal-oxide semiconductor (CMOS) image sensors have resulted in exponential increases in the amount of data that need to be read out of an image sensor, and existing readouts cannot keep up with this demand. Interesting approaches such as sparse and burst readouts have been proposed and show promise, but at considerable trade-offs in other specifications. To this end, we have begun designing and evaluating various readout topologies centered around an attempt to parallelize the sensor readout. In this paper, we have designed, simulated, and started testing a light-controlled oscillator topology with dual column and row readouts. We expect the parallel readout structure to offer greater speed and alleviate the trade-off typical in this topology, where slow pixels present a major framerate bottleneck.

Keywords: CMOS image sensors, high-speed capture, wide dynamic range, light controlled oscillator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
359 Characterization of the LMOS with Different Channel Structure

Authors: Hung-Pei Hsu, Jyi-Tsong Lin, Po-Hsieh Lin, Cheng-Hsien Chang, Ming-Tsung Shih, Chan-Hsiang Chang, Shih-Chuan Tseng, Min-Yan Lin, Shih-Wen Hsu

Abstract:

In this paper, we propose a novel metal oxide semiconductor field effect transistor with L-shaped channel structure (LMOS), and several type of L-shaped structures are also designed, studied and compared with the conventional MOSFET device for the same average gate length (Lavg). The proposed device electrical characteristics are analyzed and evaluated by three dimension (3-D) ISE-TCAD simulator. It can be confirmed that the LMOS devices have higher on-state drain current and both lower drain-induced barrier lowering (DIBL) and subthreshold swing (S.S.) than its conventional counterpart has. In addition, the transconductance and voltage gain properties of the LMOS are also improved.

Keywords: Average gate length (Lavg), drain-induced barrier lowering (DIBL), L-shaped channel MOSFET (LMOS), subthreshold swing (S.S.).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
358 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: Amplifier, DVB-T, LDMOS, MOSFETS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
357 Pressure-Detecting Method for Estimating Levitation Gap Height of Swirl Gripper

Authors: Kaige Shi, Chao Jiang, Xin Li

Abstract:

The swirl gripper is an electrically activated noncontact handling device that uses swirling airflow to generate a lifting force. This force can be used to pick up a workpiece placed underneath the swirl gripper without any contact. It is applicable, for example, in the semiconductor wafer production line, where contact must be avoided during the handling and moving of a workpiece to minimize damage. When a workpiece levitates underneath a swirl gripper, the gap height between them is crucial for safe handling. Therefore, in this paper, we propose a method to estimate the levitation gap height by detecting pressure at two points. The method is based on theoretical model of the swirl gripper, and has been experimentally verified. Furthermore, the force between the gripper and the workpiece can also be estimated using the detected pressure. As a result, the nonlinear relationship between the force and gap height can be linearized by adjusting the rotating speed of the fan in the swirl gripper according to the estimated force and gap height. The linearized relationship is expected to enhance handling stability of the workpiece.

Keywords: Swirl gripper, noncontact handling, levitation, gap height estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
356 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
355 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung

Abstract:

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V·s at 250°C.

Keywords: Single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, Thin-film transistor (TFT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727
354 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators

Authors: Isao Tomita

Abstract:

The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.

Keywords: All-silicon raman laser, FTTH, GE-PON, quasi-phase-matched structure, resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
353 Characterization of Three Photodetector Types for Computed Tomography Dosimetry

Authors: C. M. M. Paschoal, D. do N. Souza, L. A. P. Santos

Abstract:

In this study three commercial semiconductor devices were characterized in the laboratory for computed tomography dosimetry: one photodiode and two phototransistors. It was evaluated four responses to the irradiation: dose linearity, energy dependence, angular dependence and loss of sensitivity after X ray exposure. The results showed that the three devices have proportional response with the air kerma; the energy dependence displayed for each device suggests that some calibration factors would be applied for each one; the angular dependence showed a similar pattern among the three electronic components. In respect to the fourth parameter analyzed, one phototransistor has the highest sensitivity however it also showed the greatest loss of sensitivity with the accumulated dose. The photodiode was the device with the smaller sensitivity to radiation, on the other hand, the loss of sensitivity after irradiation is negligible. Since high accuracy is a desired feature for a dosimeter, the photodiode can be the most suitable of the three devices for dosimetry in tomography. The phototransistors can also be used for CT dosimetry, however it would be necessary a correction factor due to loss of sensitivity with accumulated dose.

Keywords: Dosimetry, computed tomography, phototransistor, photodiode

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
352 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

Industries produce millions of cubic meters of effluent every year and the wastewater produced may be released into the surrounding water bodies, treated on-site or at municipal treatment plants. The determination of organic matter in the wastewater generated is very important to avoid any negative effect on the aquatic ecosystem. The scope of the present work is to assess the physicochemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD5 and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physicochemical composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10269
351 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: Atomic Clusters, Density Functional Theory, Jellium Model, Magic Clusters, Smart Nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180