Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials
Authors: Debesh R. Roy
Abstract:
The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.
Keywords: Atomic Clusters, Density Functional Theory, Jellium Model, Magic Clusters, Smart Nanomaterials.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110087
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246References:
[1] A. Krüger, Carbon Materials and Nanotechnology, NY, USA: Wiley- VCH, 2010.
[2] Handbook of nanotechnology (3rd Ed.), Ed. B. Bhushan (Springer- Verlag, NY, 2010).
[3] Nanoclusters: A Bridge Across Disciplines, Eds. P. Jena, and A.W. Castleman, Jr. (Elsevier, Amsterdam, 2010).
[4] R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature (London) 360 (1992) 444.
[5] P. K. Chattaraj, and D. R. Roy, J. Phys. Chem. A 111 (2007) 4684.
[6] D. R. Roy, J. Mol. Struct. 1007 (2012) 203.
[7] H. W. Kroto, J. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature (London) 318 (1985) 162.
[8] S. M. Gorun, Oxo Iron(III) aggregates, In: Metal clusters in proteins, Ed. L. Que, Jr. (ACS symposium series, Washington, DC), vol. 372, p. 196, 1988.
[9] J. Bernholc, C. Roland, and B. I. Yakobson, Curr. Op. Sol. St. Mat. Sci. 2 (1997) 706.
[10] P. Martyniuk, and A. Rogalski, Prog. Quantum Electr. 32 (2008) 89.
[11] L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S. R. Cohen, and R. Tenne, Nature (London) 387 (1997) 791.
[12] S. M. Lee, Y. H. Lee, Y. G. Hwang, J. Elsner, D. Porezag, and T. Frauenheim, Phys. Rev. B 60 (1999) 7788.
[13] R. I. G. Hughes, Science 14 (2006) 457.
[14] P. Hohenberg, and W. Kohn, Phys. Rev. B 136 (1964) B864.
[15] W. Kohn, and L. J. Sham, Phys. Rev. A 140 (1965) A1133.
[16] R. G. Parr, and W. Yang, Density Functional Theory of Atoms and Molecules, New York, USA: Oxford University Press, 1989.
[17] W. D. Knight, K. Clemenger, W. A. deHeer, W. A. Saunders, M. Y. Chou, and M. L. Cohen, Phys. Rev. Lett. 52 (1984) 2141.
[18] S. A. Claridge, A. W. Castleman Jr., S. N. Khanna, C. B. Murray, A. Sen, and P. S. Weiss, ACS Nano 3 (2009) 244.
[19] A. W. Castleman, Jr., and S. N. Khanna, J. Phys. Chem. C 113 (2009) 2664.
[20] D. R. Roy, J. Nano Res. 24 (2013) 77.
[21] Quantum Phenomena in Clusters and Nanostructures, Eds. S. N. Khanna, and A. W. Castleman, Jr., New York, USA: Springer, 2003.
[22] R. G. Pearson, Hard and Soft Acids and Bases, Stroudsberg, PA, USA: Dowden, Hutchinson and Ross, 1973.
[23] M. J. Frisch et. al., GAUSSIAN 09, Revision D.01; Gaussian, Inc.: Pittsburgh PA, 2009.
[24] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
[25] V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comp. Chem. 22 (2001) 976.
[26] CHEMCRAFT, G. A. Zhurko, and D. A. Zhurko (http://www.chemcraftprog.com).
[27] I. Boustani, Phys. Rev. B 55 (1997) 16426.
[28] A. F. Jalbout, J. Mol. Struct. (Theochem) 589–590 (2002) 75.
[29] A. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 67 (2003) 063203.
[30] K. P. Huber, and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, New York, USA: Van Nostrand Reinhold, 1979.