Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30836
Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze


The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: tin, high aspect ratio, ALD, PE-MOCVD

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118


[1] T. Kääriäinen, S. Lehti, M. Kääriäinen, and D. Cameron, “Surface modification of polymers by plasma-assisted atomic layer deposition,” in Surface & Coatings Technology, 2011, vol. 205, pp. 475–479.
[2] J. Musschoot, Q. Xie, D. Deduytsche, S. Van den Berghe, R. Van Meirhaeghe, and C. Detavernier, “Atomic layer deposition of titanium nitride from TDMAT precursor,” Micoelectronic Eng., vol. 86, pp. 72–77, 2009.
[3] H. Kim, J. Kim, J. Park, Y. D. Jeon, and H. Jeon, “Metalorganic Atomic Layer Deposition of TiN Thin Films Using TDMAT and NH3,” in Journal of the Korean Physical Society, 2002, pp. 739–744.
[4] A. Jones and M. Hitchman, Chemical Vapour Deposition: Precursors, Processes and Applications. Royal Society of Chemistry, 2009.
[5] PDF card No. 38-4020.
[6] S. Riedel, S. E. Schulz, and T. Gessner, “Investigation of the plasma treatment in a multistep TiN MOCVD process,” Microelectron. Eng., vol. 50, no. 1–4, pp. 533–540, Jan. 2000.
[7] “Diffusion: Das 2. Ficksche Gesetz.” Technische Universität Braunschweig, Institut für physikalische und theoretische Chemie.
[8] V. Hauk and H. Behnken, Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation - Application - Assessment: Evaluation, Application, Assessment. Amsterdam: Elsevier Science B.V., 1997.
[9] G. Schumick and P. Seegebrecht, Prozesstechnologie. Berlin, Heidelberg: Springer-Verlag, 1991.
[10] J. A. Thornton and D. W. Hoffman, “Stress-related effects in thin films,” Thin Solid Films, vol. 171, no. 1, pp. 5–31, Apr. 1989.
[11] M. Pritschow, “Titannitrid- und Titan-Schichten für die Nano-Elektromechanik,” Dissertation, Stuttgart, 2007.
[12] D. Flötotto, “Mechanisms of intrinsic stress formation in thin film systems,” Max-Planck-Institut für Intelligente Systeme, Stuttgart, 2013.
[13] F. Piallat and J. Vitiello, “At the edge between metal organic chemical vapor deposition and atomic layer deposition: Fast Atomic Sequential Technique, for high throughput conformal deposition,” J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 34, no. 2, p. 021202, Mar. 2016.
[14] P. Caubet, T. Blomberg, R. Benaboud, C. Wyon, E. Blanquet, J.-P. Gonchond, M. Juhel, P. Bouvet, M. Gros-Jean, J. Michailos, C. Richard, and B. Iteprat, “Low-Temperature Low-Resistivity PEALD TiN Using TDMAT under Hydrogen Reducing Ambient,” J. Electrochem. Soc., vol. 155, no. 8, p. H625, 2008.
[15] S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Low-Temperature Deposition of TiN by Plasma-Assisted Atomic Layer Deposition,” J. Electrochem. Soc., vol. 153, no. 11, p. G956, 2006.