High Efficiency Perovskite Solar Cells Fabricated under Ambient Conditions with Mesoporous TiO2/In2O3 Scaffold
Authors: A. Apostolopoulou, D. Sygkridou, A. N. Kalarakis, E. Stathatos
Abstract:
Mesoscopic perovskite solar cells (mp-PSCs) with mesoporous bilayer were fabricated under ambient conditions. The bilayer was formed by capping the mesoporous TiO2 layer with a layer of In2O3. CH3NH3I3-xClx mixed halide perovskite was prepared through the one-step method and was used as the light absorber. The mp-PSCs with the composite TiO2/In2O3 mesoporous layer exhibited optimized electrical parameters, compared with the PSCs that employed only a TiO2 mesoporous layer, with a current density of 23.86 mA/cm2, open circuit voltage of 0.863 V, fill factor of 0.6 and a power conversion efficiency of 11.2%. These results indicate that the formation of a proper semiconductor capping layer over the basic TiO2 mesoporous layer can facilitate the electron transfer, suppress the recombination and subsequently lead to higher charge collection efficiency.
Keywords: Ambient conditions, high efficiency solar cells, mesoscopic perovskite solar cells, TiO2/In2O3 bilayer.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130115
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328References:
[1] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Science, vol. 338, pp. 643−647, May 2012.
[2] M . Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency”, Energy Environ. Sci., vol. 9, pp. 1989-1997, Mar. 2016.
[3] M. A. Green, A. Ho-Baillie and H. J. Snaith, “The emergence of perovskite solar cells”, Nat. Photon., vol. 8, pp. 506-514, June 2014.
[4] S. Luo, W. A. Daoud, “Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and materials design”, J. Mater. Chem. A, vol. 3, pp. 8992-9010, Nov. 2014.
[5] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. II Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature, vol. 517, no. 7535, pp. 476-480, Jan. 2015.
[6] S. Gamliel and L. Etgar, “Organo-metal perovskite based solar cells: sensitized versus planar architecture”, RSC Adv., vol. 4, pp. 29012-29021, June 2014.
[7] M. Liu, M. B. Johnston and H. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, vol. 501, pp. 395-398, Sept. 2013.
[8] X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li and Q. Meng, “Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer”, J. Mater. Chem. A, vol. 3, pp. 19288-19293, Aug. 2015.
[9] S. Yang, Y. Chen, Y. C Zheng, X. Chen, Y. Hou and H. G. Yang, “Formation of high-quality perovskite thin film for planar heterojunction solar cells”, RSC Adv., vol. 5, pp. 69502-69508, Aug 2015.
[10] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. II Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nature Materials, vol. 13, pp. 897-903, July 2014.
[11] N. G. Park, “Organometal perovskite light absorbers toward a 20% efficiency low-cost solid –state mesoscopic solar cell”, J. Phys. Chem., vol. 4, no. 15, pp. 2423-2429, July 2013.
[12] J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen, H. Lin, M. Wang, “Recent progress in efficient hybrid lead halide perovskite solar cells”, Sci. Technol. Adv. Mater., vol. 16, article 036004, pp. 1-14, June 2015.
[13] Y. Numata, Y. Sanehira and T. Miyasaka, “Impacts of heterogeneous TiO2 and Al2O3 composite mesoporous scaffold on formamidinium lead trihalide perovskite solar cells”, ACS Appl. Mater. Interfaces, vol. 8, no. 7, pp. 4608-4615, Febr. 2016.
[14] M. Che, L. Zhu, Y. L. Zhao, D. S. Yao, X. Q. Gu, J. Song, Y. H. Qiang, “Enhancing current density of perovskite solar cells using TiO2-ZrO2 composite scaffold layer”, Mater. Sci. Semicond. Process, vol. 56, pp. 29-36, Decem. 2016.
[15] A. Apostolopoulou, E. Vitoratos, P. Lianos, E. Stathatos, “Quasi solid-state photoelectrochemical cells combining nanocomposite semiconductors”, in Proc. 15th IEEE International Conf. on Nanotechnology, Rome, 2015, pp. 1374-1377.
[16] Z. Liu, K. Pan, M. Liu, M. Wang, Q. Lü, J. Li, Y. Bai, T. Li, “Al2O3-coated SnO2/TiO2 composite electrode for the dye-sensitized solar cells”, Electrochim. Acta, vol. 50, pp. 2583-2589, Apr. 2005.
[17] A. Rapsomanikis, D. Karageorgopoulos, P. Lianos, E. Stathatos, “High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air”, Solar Energy Mater. Solar Cells, vol. 151, pp. 36-43, July 2016.