Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31515
Influence of Chirp of High-Speed Laser Diodes and Fiber Dispersion on Performance of Non-Amplified 40-Gbps Optical Fiber Links

Authors: Moustafa Ahmed, Ahmed Bakry, Safwat W. Z. Mahmoud


We model and simulate the combined effect of fiber dispersion and frequency chirp of a directly modulated high-speed laser diode on the figures of merit of a non-amplified 40-Gbps optical fiber link. We consider both the return to zero (RZ) and non-return to zero (NRZ) patterns of the pseudorandom modulation bits. The performance of the fiber communication system is assessed by the fiber-length limitation due to the fiber dispersion. We study the influence of replacing standard single-mode fibers by non-zero dispersion-shifted fibers on the maximum fiber length and evaluate the associated power penalty. We introduce new dispersion tolerances for 1-dB power penalty of the RZ and NRZ 40-Gbps optical fiber links.

Keywords: Bit error rate, dispersion, frequency chirp, fiber communications, semiconductor laser.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884


[1] H. Dalir and F. Koyama, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express, vol. 8, July 2011, pp. 1075–1081.
[2] K. Petermann, Laser diode modulation and noise. Kluwer Academic Publishers, Dordrecht, 1988.
[3] K. Sato, S. Kuwahar, and Y. Miyamoto, “Chirp characteristics of 40- Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol., vol. 23, Nov. 2005, pp. 3790-3797.
[4] K. Yvind, D. Larsson, L. J. Christiansen, C. Angelo, L. K. Oxenlowe, J. Mork, D. Birkedal, J. M. Hvan, and J. Hanberg, “Low-jitter and highpower 40-GHz all-active mode-locked lasers,” IEEE Photon. Technno.Lett.,vol. 16, April 2004, pp. 975-977.
[5] ITU-T draft recommendation G. 693, “Optical interfaces for intra-office systems,” 2001.
[6] C. H. Henry, “Phase noise in injection lasers,” IEEE J. Lightwave Technol., vol. LT-4, March 1986, pp. 298–311.
[7] M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D., vol. 41, Aug. 2008, 175104 (10pp).
[8] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons Inc., New York , 2002.
[9] M. F. Ahmed, A. H. Bakry and F. T. Albelady, “Digital Modulation Characteristics of High-Speed Semiconductor Laser for Use in Optical Communication Systems,” Arab. J. Sci. Eng., vol. 39, April 2014, pp. 5745 – 5752.
[10] T. L. Koch, and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett., vol. 20, Dec. 1984, pp. 1038 -1039.
[11] K. Y. Lau, “Gain switching of semiconductor injection lasers,” J.Appl Phys. Lett., vol. 52, Jan. 1988, pp. 257-259.
[12] H. F. Liu, S. Oshiba, Y. Ogawa and Y. Kawai, “Method of Generating Nearly Transform-Limited Pulses from Gain-Switched Distributed- Feedback Laser Diodes and Its Application to Soliton Transmission”, Opt. Lett., vol. 17, Jan. 1992, pp. 64 – 66.
[13] E. Peral, W. K. Marshall, and A. Yariv, “Precise measurement of semiconductor laser chirp using effect of propagation in dispersive fiber and application to simulation of transmission through fiber gratings,” J. Lightwave Technol., vol. 16, Oct. 1998, pp. 1874-1880.
[14] A. Villafranca, J. Lasobras, and I. Garcés, “Precise characterization of the frequency chirp in directly modulated DFB laser,” Prec. 6th Spa. Conf. Electron. Dev. Madrid, 2007, pp. 173 - 176.
[15] O. Boukari, L.Hassine, O.Latry, M. Ketata, and H. Bouchriha. “Characterization of the chirp in semiconductor laser under modulation,” J. Mat. Sci. Eng. C, vol. 28, July 2009, pp. 671–675.
[16] P. Krehlik “Directly modulated lasers in negative dispersion fiber links,” Opto-Electron. Rev., vol. 15, June 2007, pp 71-77.
[17] M. Ahmed, “Modeling and simulation of dispersion-limited fiber communication systems employing directly modulated laser diodes,” Indian J. Phys., vol. 86, Nov. 2012, pp. 1013-1020.
[18] S. Balle, M. Homar, and M. S. Miguel, “Statistical properties of the spectrum of light pulses in fast pseudorandom word modulation of a single-mode semiconductor laser,” IEEE J. Quantum Electron., vol. 31, Aug. 1995, pp. 1401-1408.
[19] A. Yin, L. Li, and X. Zhang, “Analysis of modulation format in the 40 Gbit/s optical communication system,” Optik - Intl. J. Light and Electron. Opt., vol. 121, Sept. 2010, pp. 1550-1557.
[20] D. Liu, L. Wang, and J.-J. He, “Rate equation analysis of high speed Qmodulated semiconductor laser,” J. Lightwave Technol., vol. 28, Sept. 2010, pp. 3128-3135.
[21] M. Ahmed, S. Mahmoud, and A. Mahmoud, “Influence of pseudorandom bit format on the direct modulation performance of semiconductor lasers,” Pramana J. Phys., vol. 79, Dec. 2012, pp. 1443- 1456.
[22] M. Ahmed, S. W. Z. Mahmoud, and A. A. Mahmoud, “Comparative study on modulation dynamic characteristics of laser diodes using RZ and NRZ bit formats,” Int. J. of Num. Model., vol. 27, May 2013, pp. 138-152.
[23] M. Ahmed, M. Yamada, and S. W. Z. Mahmoud, “Analysis of semiconductor laser dynamics under gigabit rate modulation,” J. Appl. Phys., vol. 101 , Feb. 2007, pp. 3119-3126.
[24] M. Ahmed, “Influence of transmission bit rate on performance of optical fiber communication systems with direct modulation of laser diodes,” J. Phys. D, vol. 42, Sept. 2009, pp. 185104-185111.
[25] M. Ahmed and A. El-Lafi, “Analysis of small-signal intensity modulation of semiconductor lasers taking account of gain suppression,” Pramana J. Phys., vol. 71, July 2008, pp.99-115.
[26] S. W. Z. Mahmoud, M. Ahmed, and R. Michalzik, “Influence of optical feedback-induced phase on turn-on dynamics of vertical-cavity surfaceemitting lasers,” Proc. 46th IEEE Midwest Symp. Circuit. Syst. (MWSCAS’2003), Cairo, Dec. 2004, pp. 1354-1358.
[27] M. Ahmed, "Numerical approach to field fluctuations and spectral lineshape in InGaAsP laser diodes", Intl. J. Numer. Model.Simul.Vol. 17, March 2004, pp. 147-163.
[28] I. Kim, T. J. Miller, and Y. K. Park, “10-Gb/s transmission using 1.3-μm low-chirp high-power directly modulated, packaged DFB laser module for short distance (<50 km) applications,” IEEE Photon. Technol. Lett. , vol. 9, Aug. 1997, pp. 1167-1169.
[29] I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1.55-μm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett., vol. 13, Jul. 2001, pp. 735-737.