%0 Journal Article
	%A Hisham M. Abourayana and  Nuri A. Zreiba and  Abdulkader M. Elamin
	%D 2011
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 50, 2011
	%T Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method
	%U https://publications.waset.org/pdf/14235
	%V 50
	%X Polymer-like organic thin films were deposited on both
aluminum alloy type 6061 and glass substrates at room temperature by
Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing
benzene and hexamethyldisiloxane (HMDSO) as precursor materials.
The surface and physical properties of plasma-polymerized organic
thin films were investigated at different r.f. powers. The effects of
benzene/argon ratio on the properties of plasma polymerized benzene
films were also investigated. It is found that using benzene alone
results in a non-coherent and non-adherent powdery deposited
material. The chemical structure and surface properties of the asgrown
plasma polymerized thin films were analyzed on glass
substrates with FTIR and contact angle measurements. FTIR spectra
of benzene deposited film indicated that the benzene rings are
preserved when increasing benzene ratio and/or decreasing r.f.
powers. FTIR spectra of HMDSO deposited films indicated an
increase of the hydrogen concentration and a decrease of the oxygen
concentration with the increase of r.f. power. The contact angle (θ) of
the films prepared from benzene was found to increase by about 43%
as benzene ratio increases from 10% to 20%. θ was then found to
decrease to the original value (51°) when the benzene ratio increases
to 100%. The contact angle, θ, for both benzene and HMDSO
deposited films were found to increase with r.f. power. This signifies
that the plasma polymerized organic films have substantially low
surface energy as the r.f power increases. The corrosion resistance of
aluminum alloy substrate both bare and covered with plasma
polymerized thin films was carried out by potentiodynamic
polarization measurements in standard 3.5 wt. % NaCl solution at
room temperature. The results indicate that the benzene and HMDSO
deposited films are suitable for protection of the aluminum substrate
against corrosion. The changes in the processing parameters seem to
have a strong influence on the film protective ability. Surface
roughness of films deposited on aluminum alloy substrate was
investigated using scanning electron microscopy (SEM). The SEM
images indicate that the surface roughness of benzene deposited films
increase with decreasing the benzene ratio. SEM images of benzene
and HMDSO deposited films indicate that the surface roughness
decreases with increasing r.f. power. Studying the above parameters
indicate that the films produced are suitable for specific practical
applications.
	%P 117 - 123