The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32919
The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner


In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931


[1] Z. Hashin, “Analysis of composite materials,” J. App. Mech., vol.50, no.3, pp. 481-505, Sep. 1983.
[2] G. Jayamol, M. S. Sreekala, T. A. Sabu, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polym. Eng. and Sci., vol. 41, no.9, pp. 1471-1485, Apr. 2004.
[3] N. N. Ghosh, B. Kiskan, Y. Yagci, “Polybenzoxazines-New high performance thermosetting resins: Synthesis and Properties,” Prog. in Polym. Sci., vol.32, no.11, pp.1344-1391, Nov. 2007 .
[4] E. Sogut, A. C. Seydim, “Biyobazlı nanokompozitler ve gıda ambalajlamadaki uygulamaları,” J. of Food, vol.42, no.6, pp. 821-833, Dec. 2017.
[5] M. Kaya, “Plastik nanokompozitler,” Pagev Plastik Dergisi, 2003.
[6] W. Arayapranee, G. L. A. Rempel, “Comparative study of the cure characteristics, processibility, mechanical properties, ageing and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends,” J. Appl. Polym. Sci., vol.109, no.2, pp.932-941, Apr. 2008.
[7] W. Obrecht, J. P. Lambert, M. Happ, C. S. Oppenheimer, J. Dunn, R. Krüger, “Rubber,” 4.Emulsion Rubbers in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2012.
[8] P. W. Allen, “Natural Rubber and the Synthetics,” London: Crosby Lockwood, 1972.
[9] C. F. Antunes, V. M. Duin , A. V. Machado, “Morphology and phase inversion of EPDM/PP blends – effect of viscosity and elasticity,” Polym. Test., vol.30, no.8, pp. 907–915, Dec. 2011 .
[10] W. K. Wang, W. Yang, R. Y. Bao, B. H. Xie, M. B. Yang, “Effect of repetitive processing on the mechanical properties and fracture toughness of dynamically vulcanized iPP/EPDM blends,” J. Appl. Polym. Sci., vol.120, no.1, pp.86–94, Oct. 2010.
[11] H. S. Jung, M. C. Choi, Y. W. Chang, P. H. Kang, S. C. Hong, “Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends,” Europ. Polym. J., vol.66, pp.367-375, May 2015.
[12] D. M. Stelescu, A. Airinei, M. Homocianu, N. Fifere, D. Timpu, M. Aflori, “Structural characteristics of some high density polyethylene/EPDM blends,” Polym. Test., vol.32, no.2, pp. 187–196, 2013.
[13] E. Lourenço, M. I. Felisberti, “Thermal and mechanical properties of in-situ polymerized PS/EPDM blends,” Europ. Polym. J., vol.42, no.10, pp. 2632–2645, Oct. 2006.
[14] J. H. Go, C. S. Ha, “Rheology and Properties of EPDM/BR Blends with or Without a Homogenizing Agent or a Coupling Agent,” J. App. Polym. Sci., vol.62, no.3, pp. 509-521, Oct 1996.
[15] K. H. Kim, W. J. Cho, C. S. Ha, “Properties of dynamically vulcanized EPDM and LLDPE blends,” J. Appl. Polym. Sci., vol.59, no.3, pp. 407-414, Jan 1996.
[16] M. Xanthos, “Functional Fillers for Plastics, Part 1,” Wiley‐VCH Verlag GmbH&Co. KGaA 10.1002/3527605096, 2005: 1-16.
[17] A. Ashori, “Wood plastic composites as promising green-composites for automotive industries,” Bioresource Techn., vol.99, no.11, pp.4661-4667, Jul. 2008.
[18] B. Poyraz, A. Tozluoglu, Z. Candan, A. Demir, M. Yavuz, U. Buyuksari, H. I. Unal, H. Fidan, R. C. Saka, “TEMPO-treated CNF Composites: Pulp and Matrix Effect,” Fibers and Polymers, vol.19, no.1, pp.195-204, Jan. 2018 .
[19] M. J. Cho, B. D. Park, “Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites,” J. Ind. and Eng. Chem., vol.17, no.1, pp.36-40, Jan.2011.
[20] M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, T. Lindstrom, “Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels,” Biomacromolecules, vol.8, no.6, pp.1934-1941, May 2007.
[21] T. Saito, S. Kumura, Y. Nishiyama, A. Isogai, “Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose,” Biomacromolecules, vol.8, no.8, pp.2485-2491, Jul. 2007.
[22] I. Besbes, S. Alila, S. Boufi, “Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content,” Carbohydr. Polym., vol.84, no.3, pp.975-983, Mar. 2011.
[23] J. A. F. Gamelas, J. Pedrosa, A. F. Lourenço, P. Mutje, I. Gonzalez, G. Chinga-Carrasco, G. Singh, P. J. T. Ferreira, “On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment,” Micron, vol.72, pp.28-33, May 2015.
[24] A. Cobut, H. Sehaqui, L. A. Berglund, “Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix,” Bioresources, vol.9, no.2, pp.3276-3289, 2014.
[25] L. Melone, L. Altomare, I. Alfieri, A. Lorenzi, L. Nardo, C. Punta, “Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties,” J. of Photochem. and Photobiology A: Chem, vol.261, pp.53-60, Jun 2013.
[26] Z. Quifeng, C. Zhiyong, G. Shaoqin, “Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents,” J. Mater. Chem., vol.9, no.1, pp.1-31, 2014.