Search results for: FPGA
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 96

Search results for: FPGA

36 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, PLL megafunction, FPGA, time resolution, digitally-controlled DC-DC switching converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
35 Experimental Investigation of Indirect Field Oriented Control of Field Programmable Gate Array Based Five-Phase Induction Motor Drive

Authors: G. Renuka Devi

Abstract:

This paper analyzes the experimental investigation of indirect field oriented control of Field Programmable Gate Array (FPGA) based five-phase induction motor drive. A detailed d-q modeling and Space Vector Pulse Width Modulation (SVPWM) technique of 5-phase drive is elaborated in this paper. In the proposed work, the prototype model of 1 hp 5-phase Voltage Source Inverter (VSI) fed drive is implemented in hardware. SVPWM pulses are generated in FPGA platform through Very High Speed Integrated Circuit Hardware Description Language (VHDL) coding. The experimental results are observed under different loading conditions and compared with simulation results to validate the simulation model.

Keywords: Five-phase induction motor drive, field programmable gate array, indirect field oriented control, multi-phase, space vector pulse width modulation, voltage source inverter, very high speed integrated circuit hardware description language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
34 A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Authors: Kostas Siozios, Dimitrios Soudris, Antonios Thanailakis

Abstract:

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Keywords: Design Methodology, FPGA, Interconnection, Low-Energy, High-Performance, CAD tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
33 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
32 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems

Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki

Abstract:

This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.

Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
31 64 bit Computer Architectures for Space Applications – A study

Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy

Abstract:

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
30 A Processor with Dynamically Reconfigurable Circuit for Floating-Point Arithmetic

Authors: Yukinari Minagi , Akinori Kanasugi

Abstract:

This paper describes about dynamic reconfiguration to miniaturize arithmetic circuits in general-purpose processor. Dynamic reconfiguration is a technique to realize required functions by changing hardware construction during operation. The proposed arithmetic circuit performs floating-point arithmetic which is frequently used in science and technology. The data format is floating-point based on IEEE754. The proposed circuit is designed using VHDL, and verified the correct operation by simulations and experiments.

Keywords: dynamic reconfiguration, floating-point arithmetic, double precision, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
29 A Virtual Simulation Environment for a Design and Verification of a GPGPU

Authors: Kwang Y. Lee, Tae R. Park, Jae C. Kwak, Yong S. Koo

Abstract:

When a small H/W IP is designed, we can develop an appropriate verification environment by observing the simulated signal waves, or using the serial test vectors for the fixed output. In the case of design and verification of a massive parallel processor with multiple IPs, it-s difficult to make a verification system with existing common verification environment, and to verify each partial IP. A TestDrive verification environment can build easy and reliable verification system that can produce highly intuitive results by applying Modelsim and SystemVerilog-s DPI. It shows many advantages, for example a high-level design of a GPGPU processor design can be migrate to FPGA board immediately.

Keywords: Virtual Simulation, Verification, IP Design, GPGPU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
28 Modified Montgomery for RSA Cryptosystem

Authors: Rupali Verma, Maitreyee Dutta, Renu Vig

Abstract:

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

Keywords: RSA, Montgomery modular multiplication, 4:2 compressor, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
27 Low Power Approach for Decimation Filter Hardware Realization

Authors: Kar Foo Chong, Pradeep K. Gopalakrishnan, T. Hui Teo

Abstract:

There are multiple ways to implement a decimator filter. This paper addresses usage of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate by factor of 64 and detail of the implementation step to realize this design in hardware. Low power design approach for CIC filter and half band filter will be discussed. The filter design is implemented through MATLAB system modeling, ASIC (application specific integrated circuit) design flow and verified using a FPGA (field programmable gate array) board and MATLAB analysis.

Keywords: CIC filter, decimation filter, half-band filter, lowpower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
26 Floating-Point Scaling for BSS Gain Control

Authors: Abdelmalek Fermas, Adel Belouchrani, Otmane Ait Mohamed

Abstract:

In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.

Keywords: Automatic Gain Control, Blind Source Separation, Floating-Point Representation, FPGA Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
25 Energy-Efficient Sensing Concept for a Micromachined Yaw Rate Sensor

Authors: D. Oshinubi, M. Rocznik, K. Dostert

Abstract:

The need for micromechanical inertial sensors is increasing in future electronic stability control (ESC) and other positioning, navigation and guidance systems. Due to the rising density of sensors in automotive and consumer devices the goal is not only to get high performance, robustness and smaller package sizes, but also to optimize the energy management of the overall sensor system. This paper presents an evaluation concept for a surface micromachined yaw rate sensor. Within this evaluation concept an energy-efficient operation of the drive mode of the yaw rate sensor is enabled. The presented system concept can be realized within a power management subsystem.

Keywords: inertial sensors, micromachined gyros, gyro sensing concepts, power management, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
24 Performance Comparison of Real Time EDAC Systems for Applications On-Board Small Satellites

Authors: Y. Bentoutou

Abstract:

On-board Error Detection and Correction (EDAC) devices aim to secure data transmitted between the central processing unit (CPU) of a satellite onboard computer and its local memory. This paper presents a comparison of the performance of four low complexity EDAC techniques for application in Random Access Memories (RAMs) on-board small satellites. The performance of a newly proposed EDAC architecture is measured and compared with three different EDAC strategies, using the same FPGA technology. A statistical analysis of single-event upset (SEU) and multiple-bit upset (MBU) activity in commercial memories onboard Alsat-1 is given for a period of 8 years

Keywords: Error Detection and Correction; On-board computer; small satellite missions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
23 High Level Synthesis of Kahn Process Networks(KPN) for Streaming Applications

Authors: Attiya Mahmood, Syed Ali Abbas, Shoab A. Khan

Abstract:

Streaming Applications usually run in parallel or in series that incrementally transform a stream of input data. It poses a design challenge to break such an application into distinguishable blocks and then to map them into independent hardware processing elements. For this, there is required a generic controller that automatically maps such a stream of data into independent processing elements without any dependencies and manual considerations. In this paper, Kahn Process Networks (KPN) for such streaming applications is designed and developed that will be mapped on MPSoC. This is designed in such a way that there is a generic Cbased compiler that will take the mapping specifications as an input from the user and then it will automate these design constraints and automatically generate the synthesized RTL optimized code for specified application.

Keywords: KPN, DFG, FPGA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
22 Efficient Pipelined Hardware Implementation of RIPEMD-160 Hash Function

Authors: H. E. Michail, V. N. Thanasoulis, G. A. Panagiotakopoulos, A. P. Kakarountas, C. E. Goutis

Abstract:

In this paper an efficient implementation of Ripemd- 160 hash function is presented. Hash functions are a special family of cryptographic algorithms, which is used in technological applications with requirements for security, confidentiality and validity. Applications like PKI, IPSec, DSA, MAC-s incorporate hash functions and are used widely today. The Ripemd-160 is emanated from the necessity for existence of very strong algorithms in cryptanalysis. The proposed hardware implementation can be synthesized easily for a variety of FPGA and ASIC technologies. Simulation results, using commercial tools, verified the efficiency of the implementation in terms of performance and throughput. Special care has been taken so that the proposed implementation doesn-t introduce extra design complexity; while in parallel functionality was kept to the required levels.

Keywords: Hardware implementation, hash functions, Ripemd-160, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
21 Analysis of Effect of Pre-Logic Factoring on Cell Based Combinatorial Logic Synthesis

Authors: Padmanabhan Balasubramanian, Bashetty Raghavendra

Abstract:

In this paper, an analysis is presented, which demonstrates the effect pre-logic factoring could have on an automated combinational logic synthesis process succeeding it. The impact of pre-logic factoring for some arbitrary combinatorial circuits synthesized within a FPGA based logic design environment has been analyzed previously. This paper explores a similar effect, but with the non-regenerative logic synthesized using elements of a commercial standard cell library. On an overall basis, the results obtained pertaining to the analysis on a variety of MCNC/IWLS combinational logic benchmark circuits indicate that pre-logic factoring has the potential to facilitate simultaneous power, delay and area optimized synthesis solutions in many cases.

Keywords: Algebraic factoring, Combinational logic synthesis, Standard cells, Low power, Delay optimization, Area reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
20 Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

Authors: Massoud Masoumi, Hosseyn Mahdizadeh

Abstract:

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Keywords: Elliptic curve cryptography, FPGA implementation, scalar point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
19 Supremacy of Differential Evolution Algorithm in Designing Multiplier-Less Low-Pass FIR Filter

Authors: Abhijit Chandra, Sudipta Chattopadhyay

Abstract:

In this communication, we have made an attempt to design multiplier-less low-pass finite impulse response (FIR) filter with the aid of various mutation strategies of Differential Evolution (DE) algorithm. Impulse response coefficient of the designed FIR filter has been represented as sums or differences of powers of two. Performance of the proposed filter has been evaluated in terms of its frequency response and associated hardware cost. Supremacy of our approach has been substantiated by comparing our result with many of the existing multiplier-less filter design algorithms of recent interest. It has also been demonstrated that DE-optimized filter outperforms Genetic Algorithm (GA) based design by a large margin.  Hardware efficiency of our algorithm has further been validated by implementing those filters on a Field Programmable Gate Array (FPGA) chip.

Keywords: Convergence speed, Differential Evolution (DE), error histogram, finite impulse response (FIR) filter, total power of two (TPT), zero-valued filter coefficient (ZFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
18 The Simulation and Realization of Input-Buffer Scheduling Algorithm in Satellite Switching System

Authors: Yi Zhang, Quan Zhou, Jun Li, Yanlang Hu

Abstract:

Scheduling algorithm is a key technology in satellite switching system with input-buffer. In this paper, a new scheduling algorithm and its realization are proposed. Based on Crossbar switching fabric, the algorithm adopts serial scheduling strategy and adjusts the output port arbitrating strategy for the better equity of every port. Consequently, it increases the matching probability. The algorithm can greatly reduce the scheduling delay and cell loss rate. The analysis and simulation results by OPNET show that the proposed algorithm has the better performance than others in average delay and cell loss rate, and has the equivalent complexity. On the basis of these results, the hardware realization and simulation based on FPGA are completed, which validate the feasibility of the new scheduling algorithm.

Keywords: Scheduling algorithm, input-buffer, serial scheduling, hardware design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
17 An Improvement of PDLZW implementation with a Modified WSC Updating Technique on FPGA

Authors: Perapong Vichitkraivin, Orachat Chitsobhuk

Abstract:

In this paper, an improvement of PDLZW implementation with a new dictionary updating technique is proposed. A unique dictionary is partitioned into hierarchical variable word-width dictionaries. This allows us to search through dictionaries in parallel. Moreover, the barrel shifter is adopted for loading a new input string into the shift register in order to achieve a faster speed. However, the original PDLZW uses a simple FIFO update strategy, which is not efficient. Therefore, a new window based updating technique is implemented to better classify the difference in how often each particular address in the window is referred. The freezing policy is applied to the address most often referred, which would not be updated until all the other addresses in the window have the same priority. This guarantees that the more often referred addresses would not be updated until their time comes. This updating policy leads to an improvement on the compression efficiency of the proposed algorithm while still keep the architecture low complexity and easy to implement.

Keywords: lossless data compression, LZW algorithm, PDLZW algorithm, WSC and dictionary update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
16 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients

Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He

Abstract:

With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.

Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
15 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: Chaotic systems, image encryption, 3D Lorenz attractor, non-autonomous modulation, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
14 Analysis of Lightweight Register Hardware Threat

Authors: Yang Luo, Beibei Wang

Abstract:

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Keywords: Side-channel analysis, hardware threat, register transfer level, dynamic power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
13 An Efficient Implementation of High Speed Vedic Multiplier Using Compressors for Image Processing Applications

Authors: Shobha Sharma, Amita Dev, Akanksha Kant

Abstract:

Digital signal processor, image signal processor and FIR filters have multipliers as an important part of their design. On the basis of Vedic mathematics, Vedic multipliers have come out to be very fast multipliers. One of the image processing applications is edge detection. This research presents a small area and high speed 8 bit Vedic multiplier system comprising of compressor based adders. This results in faster edge detection. This architecture is tested on Xilinx vertex 4 FPGA board and simulations were carried out using the Xilinx synthesis tool. Comparisons are made and this system is found to be smaller in area with high speed (the lesser propagation delay). This compressor based Vedic multiplier is 1.1 times speedier than a typical Vedic multiplier. Also, this Vedic Multiplier is 2 times speedier than a ‘simple’ multiplier.

Keywords: Detection of edges, Vedic multiplier, image processing, Urdhva Tiryakbhyam sutra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
12 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
11 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
10 An Energy Efficient Digital Baseband for Batteryless Remote Control

Authors: Wei-Da Toh, Yuan Gao, Minkyu Je

Abstract:

In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.

Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
9 CPU Architecture Based on Static Hardware Scheduler Engine and Multiple Pipeline Registers

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

The development of CPUs and of real-time systems based on them made it possible to use time at increasingly low resolutions. Together with the scheduling methods and algorithms, time organizing has been improved so as to respond positively to the need for optimization and to the way in which the CPU is used. This presentation contains both a detailed theoretical description and the results obtained from research on improving the performances of the nMPRA (Multi Pipeline Register Architecture) processor by implementing specific functions in hardware. The proposed CPU architecture has been developed, simulated and validated by using the FPGA Virtex-7 circuit, via a SoC project. Although the nMPRA processor hardware structure with five pipeline stages is very complex, the present paper presents and analyzes the tests dedicated to the implementation of the CPU and of the memory on-chip for instructions and data. In order to practically implement and test the entire SoC project, various tests have been performed. These tests have been performed in order to verify the drivers for peripherals and the boot module named Bootloader.

Keywords: Hardware scheduler, nMPRA processor, real-time systems, scheduling methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
8 Improving the Performances of the nMPRA Architecture by Implementing Specific Functions in Hardware

Authors: Ionel Zagan, Vasile Gheorghita Gaitan

Abstract:

Minimizing the response time to asynchronous events in a real-time system is an important factor in increasing the speed of response and an interesting concept in designing equipment fast enough for the most demanding applications. The present article will present the results regarding the validation of the nMPRA (Multi Pipeline Register Architecture) architecture using the FPGA Virtex-7 circuit. The nMPRA concept is a hardware processor with the scheduler implemented at the processor level; this is done without affecting a possible bus communication, as is the case with the other CPU solutions. The implementation of static or dynamic scheduling operations in hardware and the improvement of handling interrupts and events by the real-time executive described in the present article represent a key solution for eliminating the overhead of the operating system functions. The nMPRA processor is capable of executing a preemptive scheduling, using various algorithms without a software scheduler. Therefore, we have also presented various scheduling methods and algorithms used in scheduling the real-time tasks.

Keywords: nMPRA architecture, pipeline processor, preemptive scheduling, real-time system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
7 Adaptive Motion Estimator Based on Variable Block Size Scheme

Authors: S. Dhahri, A. Zitouni, H. Chaouch, R. Tourki

Abstract:

This paper presents an adaptive motion estimator that can be dynamically reconfigured by the best algorithm depending on the variation of the video nature during the lifetime of an application under running. The 4 Step Search (4SS) and the Gradient Search (GS) algorithms are integrated in the estimator in order to be used in the case of rapid and slow video sequences respectively. The Full Search Block Matching (FSBM) algorithm has been also integrated in order to be used in the case of the video sequences which are not real time oriented. In order to efficiently reduce the computational cost while achieving better visual quality with low cost power, the proposed motion estimator is based on a Variable Block Size (VBS) scheme that uses only the 16x16, 16x8, 8x16 and 8x8 modes. Experimental results show that the adaptive motion estimator allows better results in term of Peak Signal to Noise Ratio (PSNR), computational cost, FPGA occupied area, and dissipated power relatively to the most popular variable block size schemes presented in the literature.

Keywords: H264, Configurable Motion Estimator, VariableBlock Size, PSNR, Dissipated power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654