
An Improvement of PDLZW implementation with a
Modified WSC Updating Technique on FPGA

Perapong Vichitkraivin, Orachat Chitsobhuk
Computer Engineering Department, Faculty of Engineering

King Mongkut’s Institute of Technology Ladkrabang
Bangkok Thailand

Email: solidy2000@hotmail.com, kcoracha@kmitl.ac.th

Abstract—In this paper, an improvement of PDLZW implemen-
tation with a new dictionary updating technique is proposed. A
unique dictionary is partitioned into hierarchical variable word-width
dictionaries. This allows us to search through dictionaries in parallel.
Moreover, the barrel shifter is adopted for loading a new input string
into the shift register in order to achieve a faster speed. However,
the original PDLZW uses a simple FIFO update strategy, which is
not efficient. Therefore, a new window based updating technique
is implemented to better classify the difference in how often each
particular address in the window is referred. The freezing policy
is applied to the address most often referred, which would not be
updated until all the other addresses in the window have the same
priority. This guarantees that the more often referred addresses would
not be updated until their time comes. This updating policy leads
to an improvement on the compression efficiency of the proposed
algorithm while still keep the architecture low complexity and easy
to implement.

Keywords—lossless data compression, LZW algorithm, PDLZW
algorithm, WSC and dictionary update.

I. INTRODUCTION

NOWADAYS data compression is important for storing
and transmitting data. With a compression, the informa-

tion can be represented with less amount of data. This allows
us to save the storage space and transmission bandwidth. Data
compression is broadly divided into two categories. One of
these is lossless compression that the original data can be
recovered without any data loss. It is usually used to compress
text or binary files. The other is lossy compression that some
loss of data quality is so acceptable. It is usually used to
compress image data files.

One of the most widely used compression methods for
lossless compression is LZW (Lempel-Ziv-Welch) [1]. LZW
is a dictionary based compression, which encodes input data
through establishing a string table and searching the table to
identify the longest possible input data string that exists in
the table. The encoded output is a sequence of the matching
string’s address and length. It can typically compress large
English texts to about half of their original sizes. However,
conventional LZW algorithm requires large amount of pro-
cessing time for adjusting and searching through the dictio-
nary. The dynamic LZW (DLZW) and word-based DLZW
(WDLZW) algorithms were proposed to improve searching
efficiency [2]. In DLZW, the dictionary has been initialized
with different combinations of characters. It is organized in
hierarchical string tables. The baseline idea is to store the most

frequently used strings in the shorter table, which requires
fewer bits to identify the corresponding string. The tables
are updated using the move-to-front and weighting system
with associated frequency counter. During the compression
time, after the longest matching string is recognized in the
table, it is moved to the first position of its block. The table
updating process is based on the least recently used (LRU)
policy to ensure that frequently used strings are kept in the
smaller tables. This is to minimize the average number of bits
required to code a string when compared with a single table
implementation. The WDLZW algorithm is a modified version
of DLZW that focuses on text compression by identifying
each word in the text and make it a basic unit (symbol). The
algorithm encodes the input word into literal codes and copy
codes. If the search for a word has failed, it is sent out as
a literal code, which is its original ASCII code preceded by
other codes for identification. The copy code is the address
of the matching string in the string table. However, both
algorithms are too complicated and not suitable for hardware
implementation. To improve this, parallel dictionary LZW
(PDLZW) was proposed [3]. The PDLZW is a simplified
DLZW architecture suited for VLSI realization. Since not
all entries of the DLZW dictionary contains the same word
size, this leads to the need of the entire dictionary search
for every character. Consequently, the PDLZW has designed
to overcome this problem by partitioning the dictionary into
several dictionaries of different address spaces and sizes. With
the hierarchical parallel dictionary set, the search time can
be reduced significantly since these dictionaries can operate
independently and thus can carry out their search operations
in parallel. The fundamental modified structures are the uti-
lization of a virtual dictionary and the first-in first-out (FIFO).
The virtual dictionary only takes up a part of address space
with no hardware cost. The first-in first-out (FIFO) could help
to simplify the hardware implementation for the dictionary up-
date policy. The selection of an updating algorithm depends on
several factors such as compression ratio, complexity and ease
of implementation. One of the effective dictionary updating
techniques suitable for the hardware implementation of LZW
is windowed second chance updating technique (WSC) [4].
WSC partitions a dictionary into windows and uses a one-bit
flag associated with each phrase in the dictionary to keep track
of an update. This helps in reducing the time complexity to
select a phrase to be updated.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2958International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

38
5.

pd
f



In this paper, we present a modified WSC dictionary up-
dating technique for PDLZW. Instead of using a one-bit flag,
the proposed architecture uses a three-bit flags associated with
each address in the dictionary to keep track of the least referred
address to be updated while implementing the freeze policy for
the most frequently used addresses. The proposed architecture
not only takes the benefits of the parallel structure of the
hierarchical variable word width dictionary from PDLZW but
also allows the efficient updating from the modification of the
WSC algorithm. This leads to a better compression ratio while
still maintains the same time complexity as WSC.

The rest of the paper is organized as follows. Section 2
describes the principle of both PDLZW and WSC algorithms.
The proposed algorithm and its hardware architecture are
presented in section 3 while section 4 discusses the simulation
results and FPGA implementation cost. Finally, the conclu-
sions are given in Section 5.

II. RELATED WORK

A. PDLZW Algorithm

PDLZW algorithm is a LZW based implementation using
a parallel dictionary set. It partitions one large dictionary into
several small variable-word-width dictionaries. Searching in
parallel through small dictionaries would require less amount
of processing time than searching sequentially through one
large-address-space dictionary. The FIFO (first-in first-out) is
used as the dictionary update technique for simple hardware
implementation. The architecture of PDLZW compression is
showed in Fig. 1. In PDLZW, the input string is shifted into the
shift register. All of the input characters in the shift register are
searched from all CAMs (content addressable memory) simul-
taneously. The matched address having the largest number of
bytes matched is returned as the output codeword. This could
be implemented using the priority encoder and multiplexer.
The longest string matched along with the next character is
stored into the next entry pointed by the update pointer (UP)
of the next-level dictionary.

Fig. 1. The architecture of PDLZW compression processor

B. Windowed Second Chance Updating Technique (WSC)

Dictionary updating is a part of the LZW compression that
has a direct effect on compression ratio. The main propose of
dictionary updating is to find the address for the new data to
be updated into the dictionary when it is full. WSC is one of
the effective dictionary updating techniques suitable for the
hardware implementation of LZW. It partitions a dictionary
into windows with a size of K phrases. A one-bit flag is
associated with each phrase. When the phrase is referred,
the flag is set to 1. The updating occurs at the address that
never been referred before where the flag is 0. However, if
the dictionary is full, three rules for updating the flag bit are
executed as followed.

1) More than one flag in the window are 0: Select the first
phrase with flag 0, update the phrase, and set its flag.

2) Only one flag is 0: Update the phrase with flag 0, set
its flag, and reset all the other flags in the window.

3) No flag is 0: Update the first phrase, set its flag, and
reset all the other flags in the window.

Fig. 2. The architecture of WSC Updating for K of 8

After the updating, the base pointer will point to the next
window. The architecture of WSC updating is showed in Fig.
2 and Table 1 show the truth table of the priority encoder and
decoder. The architecture consists of a memory to store the
flags, a priority encoder to find the offset of the first flag 0,
a decoder to determine the flag to be updated, an OR gate
array to set the flag for the updated phrase and a multiplexer
to select the new flag.

III. THE PROPOSED ALGORITHM AND ITS HARDWARE
ARCHITECTURE

In this paper, we have proposed an improvement of
the PDLZW technique with a modified WSC for updating
strategy. In PDLZW compression algorithm, a unique
dictionary is partitioned into hierarchical variable word-width
dictionaries. The input string is shifted into the shift register
and used to search through all the partitioned dictionaries
in parallel to find the longest match. Then, it returns the
index as the encoded output and store the new string in
dictionary. Shifting input into the shift register leads to slow

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2959International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

38
5.

pd
f



encoding speed. In this paper, the barrel shifter is adopted for
loading a new input string into the shift register in order to
achieve a faster speed. However, the original PDLZW uses a
simple FIFO update strategy, which is not efficient. The WSC
method provides an efficient update technique, which aims to
reduce the complexity in selecting the address to be updated.
However, one of the problems in WSC is that there are only
a few chances for the flag to be ’0’. They are at least referred
to once. In this case, the first address in the window will be
updated even it is referred more than the others in the same
window. Therefore, we present a new updating technique to
improve the WSC technique using a three-bit flag associated
with each address in the dictionary. A three-bit flag is used
to differentiate the frequently referred addresses from the
least referred ones. When the address is referred, the flag is
increased by 1. The freezing policy is applied to the address
having the value of a three-bit flag greater than three. When
the dictionary is full, the flag associated with each address
in the window is examined the number of times that address
has been referred. The least referred address would expect to
be updated before. The hierarchical update strategy has been
executed based on the value of the flag as followed.

1) More than one address in the window has never been
referred: Select the first address never been referred and
set the flag of this address to 1.

2) Only one address has never been referred: Select that
address, set the flag to 1 and reset the flags of the other
addresses in the window except the freezing address.

3) All the addresses are referred at least one time: Select
the first address that is referred less than two times, set
the flag to 1, and reset the flags of the other addresses
in the window except the freezing address.

4) All the addresses are referred at least two times: Select
the first address that is referred less than four times, set
the flag to 1, and reset the flags of the other addresses
in the window except the freezing address.

5) All the addresses are frozen: Select the first address in
the window.

The block diagram of the proposed algorithm is shown in
Fig. 3 while the hardware implementation of the proposed
updating technique is shown in Fig. 5.

Fig. 3. The block diagram of the proposed algorithm

The window size of 8 is used in this paper. Each address
is associated with a three-bit flag. The range of the updated
addresses pointed by BASE is from n to n+7 in the window.
This requires the 8x3 = 24-bit flags for each window. The 24-

bit flags are classified into three groups; A, B and C using the
array of OR gates. The flags would be classified into group
A, if its associated address is referred to at least once. If the
address is referred to at least two and four times, its flag would
be classified into group B and C respectively.

The OR Array A is used to evaluate the group flags from
a set of 24-bit flags while the 16-bit flags of the most 2
significant bits of a three-bit flag are analyzed by the OR Array
B. For group C, only the 8-bit flags of the most significant
bit are considered. The group flag is set to ’1’ if the flags
are classified into its group. The multiplexer then selects the
group flag data from group A, B, and C using ”sel” signal. The
”sel” will select data from group A if at least one group flag
of group A is ’0’. However, if all the group flags of group A
are set to ’1’ and at least one group flag of group B becomes
’0’, the output will be from group B. Otherwise, the output is
from group C. The group flag output from the multiplexer is
decoded by a priority encoder to select the update address.
The update address is sent to PDLZW for updating that
address to a new string. The example of classification of
a three-bit flag from each updated address is presented in
Fig. 4. The example flags are ”001010000100100011000001”.
The group flags of group A, B, and C are ”11011101”,
”01011100”, and ”00011000” respectively. In this case, the
update address is selected from the data in group A and the
third address in this window is updated. Then, the flags are
set into ”001010001100100011 000001”.

Fig. 4. Example of classify three-bit flags into three groups

The reset condition is determined by the decoder, OR Array
C, and AND gate C and transmitted to the Update Bit Control
to reset all the flags in the window. After the updating, Base
will point to the next window. The truth tables of the priority
encoder and decoder are adopted from the WSC technique and
presented in Table 1.

TABLE I
PRIORITY ENCODER AND DECODER TRUE TABLES

Source Flag Priority Encoder Decoder

F7 F6 F5 F4 F3 F2 F1 F0 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 1
X X X X X X 0 1 0 0 1 0 0 0 0 0 0 1 0
X X X X X 0 1 1 0 1 0 0 0 0 0 0 1 0 0
X X X X 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0
X X X 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
X X 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
X 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2960International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

38
5.

pd
f



The basic concept of the proposed algorithm is to freeze
the address that is referred at least four times before the
flags are reset. With the new hierarchical updating strategy,
the proposed algorithm could not only improve the efficiency
in updating the dictionary but also be able to increase the
compression ratio compared to other techniques.

IV. ALGORITHM SIMULATION AND FPGA
IMPLEMENTATION

To evaluate the compression performance of the proposed
algorithm, a variety of eleven different types of files from
the Canterbury Corpus and two large files from The Large
Corpus are used [5]. We compare the compression ratios of the
three algorithms, conventional PDLZW algorithm, PDLZW
with WSC algorithms and PDLZW with the proposed updating
algorithms. A 1K-address space dictionary is used for each
algorithm with a window size of 8. All the algorithms are
implemented on XILINX (Spartan III XC3S500) FPGA. Table
2 shows the comparison of the compression ratio for each
technique. From the results in table 2, the average compression
ratio of the PDLZW with the proposed updating algorithm is
greater than that of the conventional PDLZW algorithm about
5%, and 2.3% greater than PDLZW with WSC algorithm. It
can be seen that the PDLZW with the proposed updating
technique outperforms the other techniques. With the new
updating technique, we can effectively utilize the dictionary.
This leads to an improvement in the compression efficiency
of the proposed algorithm while still keep the architecture
low complexity and easy to implement. Moreover, the im-
plementation of the barrel shifter instead of the regular shift
register helps the proposed architecture to achieve a faster
speed compared to the conventional PDLZW.

The compression rate is defined as the number of input bits
which can be compressed in one second but it depends on the
amount of the input data to be matched and the structure of
the dictionary. For the PDLZW, the hierarchical variable word-
width is adopted where the minimum and maximum sizes
of a string matched are one byte and 8 bytes respectively.
Therefore, the minimum compression rate is calculated in the
case of only one byte matched per compression while the
maximum compression rate is calculated in the case that all
8 bytes are matched for each compression. The maximum
clock rate of the proposed architecture is 49.4 MHz. The time
required for compression operation is 4 clocks. Consequently,
the minimum compression rate = [49.4 MHz / 4] x 1 x 8 bits
= 98.8 Mbits/s, thus the maximum compression rate = [49.4
MHz / 4] x 8 x 8 bits = 790.4 Mbits/s. Table 3 illustrates some
of the hardware differences between the FPGA implementation
of proposed architecture, the conventional PDLZW and the
PDLZW with WSC.

V. CONCLUSION

In this paper, we have presented a new dictionary updating
technique for the hardware implementation of PDLZW data
compression and its hardware architecture. The proposed
architecture employed the barrel shifter to the PDLZW ar-
chitecture in order to achieve a faster speed. Moreover, we

have introduced a new dictionary updating technique based
on WSC to improve the compression ratio while still keep the
proposed architecture low complexity and easy to implement.
The proposed updating technique is a window based tracking
technique using a three-bit flag instead of a one-bit flag in
order to better classify the difference in how often each
particular address in the window is referred. The freezing
policy is applied to the address having the value of a three-bit
flag greater than three, which is considered to be the address
most often referred and would not be updated until all the
other addresses in the window have the same priority. This
guarantees that the more often referred addresses would not be
updated until their time comes. This updating policy leads to
an improvement on the compression efficiency of the proposed
algorithm. It has been shown from the test results that the
PDLZW with the proposed updating technique gives a better
compression ratio of 5% greater than that of the conventional
PDLZW with a simple FIFO updating technique and 2.3%
greater than that of the PDLZW with WSC technique.

Thus, the required hardware cost is comparable to the other
techniques

REFERENCES

[1] T.A. Welch, ”A Technique for High-Performance Data Compression,”
IEEE Computer , vol. 17, no. 6, pp. 8-19, June, 1984.

[2] J. Jiang and S. Jones, ”Word-based dynamic algorithms for data com-
pression,” Proc. Inst. Elect. Eng.-I , vol. 139, no. 6, pp. 582-586, Dec
1992.

[3] M.-B. Lin, ”A parallel VLSI architecture for the LZW data compression
algorithm,” J. VLSI Signal Process. , vol. 26, no. 3, pp. 369-381, Nov.
2000.

[4] Ch. Su, Ch. Fan and J. Ch. Yo, ”Hardware efficient updating technique for
LZW CODEC design”, 1997 IEEE International Symposium on Circuits
and Systems , pp. 2797-2800, June 1997.

[5] The Canterbury Corpus file for testing new compression algorithms.
Available: http://corpus.canterbury.ac.nz/index.html.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2961International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

38
5.

pd
f



Fig. 5. The VLSI architecture of the proposed algorithm

TABLE II
COMPRESSION RATIO ACHIEVED ON TEST FILES

File Size (Byte) PDLZW PDLZW + WSC PDLZW + Proposed

alice29.txt 152089 1.792076 1.866695 1.922652

asyoulik.txt 125179 1.689667 1.757237 1.822674

cp.html 24603 1.806222 1.851764 1.878092

fields.c 11150 2.087038 2.140115 2.174549

grammar.lsp 3721 1.992503 2.014073 2.020910

kennedy.xls 1029744 3.289470 3.375214 3.334555

lcet10.txt 426754 1.776273 1.848380 1.939306

plrabn12.txt 481861 1.703185 1.775440 1.861563

ptt5 513216 4.291104 4.337572 4.386884

sum 38240 1.918836 1.952390 1.942719

xargs.1 4227 1.651172 1.685743 1.713070

bible.txt 4047392 2.040628 2.118654 2.276404

world192.txt 2473400 1.624985 1.673976 1.775846

Average 717813 2.127935 2.184404 2.234556

TABLE III
A COMPARISON OF DIFFERENT HARDWARE IMPLEMENTATIONS

Number of Number of Number of Number of

Slices Slices Flip Flops 4 input LUTs BRAMs
Clock cycle Maximum clock rate

PDLZW 3796 11% 1424 2% 6902 10% 96 92% 4 - 11 53.8 MHz

PDLZW + WSC 3819 11% 1476 2% 7073 10% 97 93% 4 - 11 47.0 MHz

PDLZW + Proposed 3826 11% 1475 2% 7168 10% 97 93% 4 49.4 MHz

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009 

2962International Scholarly and Scientific Research & Innovation 3(12) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

12
, 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

38
5.

pd
f




