@article{(Open Science Index):https://publications.waset.org/pdf/5581,
	  title     = {64 bit Computer Architectures for Space Applications – A study},
	  author    = {Niveditha Domse and  Kris Kumar and  K. N. Balasubramanya Murthy},
	  country	= {},
	  institution	= {},
	  abstract     = {The more recent satellite projects/programs makes
extensive usage of real – time embedded systems. 16 bit processors
which meet the Mil-Std-1750 standard architecture have been used in
on-board systems. Most of the Space Applications have been written
in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are
needed in the area of spacecraft computing and therefore an effort is
desirable in the study and survey of 64 bit architectures for space
applications. This will also result in significant technology
development in terms of VLSI and software tools for ADA (as the
legacy code is in ADA).
There are several basic requirements for a special processor for
this purpose. They include Radiation Hardened (RadHard) devices,
very low power dissipation, compatibility with existing operational
systems, scalable architectures for higher computational needs,
reliability, higher memory and I/O bandwidth, predictability, realtime
operating system and manufacturability of such processors.
Further on, these may include selection of FPGA devices, selection
of EDA tool chains, design flow, partitioning of the design, pin
count, performance evaluation, timing analysis etc.
This project deals with a brief study of 32 and 64 bit processors
readily available in the market and designing/ fabricating a 64 bit
RISC processor named RISC MicroProcessor with added
functionalities of an extended double precision floating point unit
and a 32 bit signal processing unit acting as co-processors. In this
paper, we emphasize the ease and importance of using Open Core
(OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as
Icarus to develop FPGA based prototypes quickly. Commercial tools
such as Xilinx ISE for Synthesis are also used when appropriate.},
	    journal   = {International Journal of Computer and Systems Engineering},
	  volume    = {3},
	  number    = {3},
	  year      = {2009},
	  pages     = {515 - 519},
	  ee        = {https://publications.waset.org/pdf/5581},
	  url   	= {https://publications.waset.org/vol/27},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 27, 2009},