
 

 

  
Abstract—Local Linear Neuro-Fuzzy Models (LLNFM) like 

other neuro- fuzzy systems are adaptive networks and provide robust 
learning capabilities and are widely utilized in various applications 
such as pattern recognition, system identification, image processing 
and prediction. Local linear model tree (LOLIMOT) is a type of 
Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its 
efficiency compared with other neuro fuzzy networks in learning the 
nonlinear systems and pattern recognition. In this paper, a dedicated 
reconfigurable and parallel processing hardware for LOLIMOT 
algorithm and its applications are presented. This hardware realizes 
on-chip learning which gives it the capability to work as a standalone 
device in a system. The synthesis results on FPGA platforms show its 
potential to improve the speed at least 250 of times faster than 
software implemented algorithms. 
 

Keywords—LOLIMOT, Hardware, Neuro-Fuzzy Systems, 
Reconfigurable, Parallel.  

I. INTRODUCTION 
NTELLIGENT and highly autonomous systems are playing 
a great role in both industrial and academic settings of 

today. Artificial neural networks, fuzzy systems [1] and neuro 
fuzzy systems [2] ,[3], demonstrate some main fields of 
computational intelligence, which have many applications 
ranging from engineering to economics, from forecasting to 
control and system identification [4], [5]. These techniques 
provide powerful tools for non-parametric analysis of 
nonlinear systems model-free processing and control of 
uncertain systems and plants. In many cases, proofs that these 
systems are universal approximators and after learning act in 
asymptotically optimal manner in Bayesian senses are readily 
available. On the negative side, the black box and model-free 
approach underlying the use of these tools means that there 
are few theorems and methods for assuring stability and 
robustness or carrying out post optimality analysis on the total 
systems where these tools have been used. Despite these 
applications and facilities, many practical applications require 
a large computational power to overcome complexity or real-
time constraints. Hardware implementation is a good solution 
for these restrictions [4], [7] and [8].   

In order to take advantage of redundancies in the solution 
and improve the performance of these systems to let them take 
critical roles in real-time and dynamic system control and 
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prediction and fully exploit the parallel nature of these types 
of fuzzy systems a dedicated hardware is needed. The 
hardware should also have high classification rate and be able 
to solve different types of problems with its reconfigurable 
architecture. 

Generally there are three methods for training neuro-fuzzy 
systems: off-line, on-line and on-chip training. On-line 
training runs the learning with an algorithm on an external 
computer interfaced to the hardware device to be trained. The 
latter computes the feed forward step, while the external 
computer updates weights for training step. On-chip training 
trains the network on the chip itself, by means of appropriate 
circuits which must be implemented on the chip. No external 
computer is needed. This solution requires a more complex 
hardware [8]. 

In this paper, the hardware implementation of the 
LOLIMOT algorithm is presented [3]. This algorithm divides 
the input space into local linear models which has a higher 
performance and needs lower neuron count compared to 
normal neural networks in terms of learning a mapping of the 
input space [9]. This algorithm can be used in all TSK neuro-
fuzzy networks with real-time applications such as [10] and 
[11], which persuade the need of dedicated hardware systems 
to implement this algorithm on it. The nature of the algorithm 
is based on matrix computations. Although, matrix 
computations are elaborated in several hardware 
implementations [12], there is not an efficient dedicated 
hardware implementation for LOLIMOT algorithm that 
gathers the matrix computation implementations in a single 
framework. On the other hand, exploiting the native 
parallelism of the whole LOLIMOT algorithm is the other 
main motive for implementation of a dedicated hardware. 
While preserving the ability of the single matrix operations in 
our proposed hardware system such as matrix multiplication 
and matrix inversion, also our implemented hardware system 
is a dedicated hardware realization of whole LOLIMOT 
algorithm. We employ fine and important hardware design 
techniques to improve the performance of the realized 
LOLIMOT hardware. It can be used as a matrix-computation 
system with the capability of realizing matrix multiplication 
and inversion and the other operations that can be categorized 
in this class. The processing engines of our LOLIMOT 
hardware system are design in a way that can bear the 
computation requirement of the on-chip learning. In fact, in 
the learning phase they are reconfigured to accomplish the 
computations required for learning from the input samples. 
One of the main advantages of our hardware realization is on-
chip learning capability. 
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II. MATHEMATICAL DESCRIPTION 
The network output is calculated as a weighted sum of the 

outputs of the local linear models, where the validity function 
is interpreted as the operating point dependent weighting 
factors. The validity functions are typically chosen as 
normalized Gaussians. 

The most important factor for the success of LOLIMOT is 
divide and conquer strategy that is used in it.  LOLIMOT is an 
incremental tree-construction algorithm that partitions the 
input space by axis-orthogonal splits [3]. 

In this section, a mathematical formulation of LLNFM with 
LOLIMOT learning algorithm is described [3]. The 
fundamental approach with locally linear neuro-fuzzy models 
is dividing the input space into small subspaces with fuzzy 
validity functions. Any produced linear part with its validity 
function can be described as a fuzzy neuron. Thus the whole 
model is a neuro-fuzzy network with one hidden layer and a 
linear neuron in the output layer which simply calculates the 
weighted sum of the outputs of locally linear models. The 
Network structure is shown in Fig. 1. 

 
Fig. 1 Network structure of a static local linear neuro-fuzzy with M  

neurons for p  inputs [4] 

In (1) input-output relation of LLNFM is represented. In 
this formula M is number of neurons, 

T
puuuu ]...[ 21= is the model input, p is number of 

input dimension, N is the number of input samples and 

ijω denotes the weights of i th neuron [3].  
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The validity functions are chosen as normalized Gaussians. 
Normalization is necessary for a proper interpretation of 
validity functions. In (2) and (3) validity function formulation 
is represented. 
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Each Gaussian validity function has two parameters; centre 

ijc and standard deviation ijσ .Also there are pM ×  weight 
parameters of the nonlinear hidden layer. Optimization or 

learning methods are used to adjust fine tuning of two sets of 
parameters, ijω weights and the parameters of validity 

functions.      
Local optimization of linear parameters is simply obtained 

by Least squares technique. The global parameter vector 
contains )1( +× pM  elements. In (4) these parameters are 
shown. 

[ ]MpMp ωωωωωωωω ......... 0212011110=     (4) 

Associated regression matrix X for N measured data 
samples is formulated in (5) and (6). Thus the weights will be 
obtained by solving (7) and (8) as shown in (9).   
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Several methods can be used to optimize the premise rules. 

Tree based methods are appropriate for their simplicity and 
intuitive constructive algorithm. LOLIMOT is an incremental 
based on three iterative steps: first the worst Local Linear 
Model is defined according to local loss functions. This LLM 
neuron is selected to be divided. In the second step all 
divisions of this LLM on input space are constructed and 
checked. Finally the best division for the new neuron must be 
added. For further information about LOLIMOT algorithm 
refer to [3]. In Fig. 2 the first five iterations of LOLIMOT 
algorithm for a two dimensional input space is shown. 

 
Fig. 2 Operation of the LOLIMOT algorithm in the first five 

iterations for a two dimensional input space [4] 

The computation complexity of LOLIMOT grows linearly 
with number of neurons. This computation complexity is 
comparable with other algorithms [3]. Time complexity of 
LOLIMOT is represented in (10).  
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)2())1(2( 43 MpOpMpO ≈+          (10)  
The remarkable properties of locally linear neuro-fuzzy 

model, its transparency and intuitive construction, lead to the 
use of least squares for rule antecedent parameters and 
incremental learning procedures for rule consequent 
parameters [3]. 

A. Complexity Analysis 
The main complexity of LOLIMOT algorithm is to 

calculate Equation (10) for MMp ×⎥⎦
⎥

⎢⎣
⎢ +

×
2

1  times, which 

by itself consists of different types of matrix computations 
such as matrix-matrix multiplication, matrix-vector 
multiplication and matrix inversion. It is noticeable that the 
matrix in (9) is a diagonal matrix which makes 

)( )1( NN
T

Np QX ××+  a simple multiplication of each column of  

XT by the same diagonal index element of matrix Q, this 
means (11) is a matrix power operation on matrix XT with 
extra multiplication of diagonal element of matrix Q into each 
column of XT. In this paper, we name the operation (11) 
“pow.“ The main computations of the algorithm take place in 
(11) and (12).  

)1()1()1()1( )( +×++×××+ pppNNN
T

Np XQX       (11) 

1)1(1)1( )( ×+×××+ pNNN
T

Np yQX          (12) 

The pow is a Symmetric matrix, so the computation of pow 
is reduced to about half of the number of elements of the 
result matrix. Consider that ijpow   is the i th row and j th 
column element of pow which is computed with the Equation 
(13). 

kkkj

N

k
kiij QXXpow ××= ∑

=1
         (13) 

Equation  (13) indicates that the matrix power can be 
computed in N steps such that in the l th step, the l th  sample 
vector ( l  th row) of matrix X and the l th diagonal element of 
matrix Q are needed to produce llljli QXX ××  for different 

i ’s and j ’s. All step’s results are added together to make the 
final result of pow. Total amount of computations in each step 
is about 

2
)2()1( +×+ pp  multiply accumulate operation which 

is the number of different combinations of liX and ljX , In 
the other hand, elements of matrix in (12) can be computed 
with the same manner shown in Equation (14) ,  

1
1

11
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N

k
kiiNNN

T
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=
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B.  Matrix Inversion 
The second issue in computing (10) is to compute  

1)( −XQX T   or the inverse of pow. While matrix power is a 
Symmetric Positive Definitive (SPD), its inverse can be 
computed by decomposing it into its Cholesky factor. Instead 
of seeking arbitrary lower and upper triangular factors L and 

U, Cholesky Decomposition constructs a lower triangular 
matrix L whose transpose LT can itself serve as the upper 
triangular part [13]. In other words pow=L.LT and pow-1=L-

T.L-1. The pow is a )1()1( +×+ pp  matrix and is very small 
compared to matrix X so computing its inverse is not a 
bottleneck in this problem, while Matrix inversion can be 
solved by matrix multiplication engine in O(n3).  

C. Updating the Coefficients 
The μ of new neurons have just a difference in one of the 

dimensions or exponential phrases. For example if the x th 
dimension is the dimension which should be divided into two 
neurons. The new μ s can be computed as presented in 
Equations (15) to (18).  
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For other neurons just the normalization dividend is 
changed and as described in Section 2 the input matrix of each 
Neuron is the same as others. The only difference is the matrix 
Qi which is different for neurons and as shown in Figure 4. 
Each diagonal element of Qi matrix is fed to the processing 
group just in one clock cycle and the other inputs are matrix 
X’s elements. 

III. ARCHITECTURE DESIGN 
This design can be mapped in to a scalable and also 

reconfigurable array of processing elements by providing 
suitable connections between processing elements in order to 
take advantage of data dependencies. The key idea in the new 
design is to fill the presented design with additional PEs and 
make a matrix of processing engines which is in a regular 
arrangement of processing elements. Then the matrix of PEs is 
reduced to a chain of PEs and the computations of each step 
are done in multiple cycles. This new method is presented in 
theorem 1. 

Theorem 1: Total computations of matrix power for matrix 

ppX (p is even) can be done with p/2 processing units and a 
multiplier in p/2+1 steps and data rate is two elements per 
each step. PEs are connected in an array, each PE contains 
two multipliers, two adders and two (p/2+1) registers. 
Proof:   

The key idea in Theorem 1 is to bring p/2 of the N th 
sample at first step and compute their multiplication and then 
bring each of the other p/2 elements in a step and let the 
processing units pass their input data to their neighbours in 
order to reuse it.  
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Each result of the MAC unit is saved in its own register and 
will be accumulated with the next p dimensional sample 
temporary value. The total amount of computations in (p/2+1) 
clock cycles is equal to the desired amount of computation to 
calculate matrix pow in each step, which is  

)1(
2

22
2

)1
2

()1
2

( +×
+

=××+++ ppppp  as shown in Fig. 3. 

Just one additional step is needed to compute XTQy in which 
the input of all MACs is y. 
 

X 1 1 Q 1 1 X 1 2 Q 1 1 X 1 1 Q 1 1

X 1 1 X 1 4 Q 1 1 X 1 2 X 1 4 Q 1 1 X 1 3 X 1 4 Q 1 1

X 1 2 X 1 2 Q 1 1X 1 1 X 1 1 Q 1 1 X 1 3 X 1 3 Q 1 1

X 1 2 X 1 3 Q 1 1 X 1 4 X 1 4 Q 1 1X 1 1 X 1 2 Q 1 1

X 1 3 X 1 5 Q 1 1X 1 1 X 1 5 Q 1 1 X 1 2 X 1 5 Q 1 1

X 1 5 X 1 4 Q 1 1 X 1 5 X 1 5 Q 1 1X 1 1 X 1 3 Q 1 1

X 1 3 X 1 6 Q 1 1X 1 1 X 1 6 Q 1 1 X 1 2 X 1 6 Q 1 1

X 1 6 X 1 5 Q 1 1 X 1 6 X 1 6 Q 1 1X 1 6 X 1 4 Q 1 1

X 2 3 Q 2 2X 2 1 Q 2 2 X 2 2 Q 2 2

X 1 1 X 1 2 X 1 3

Q 1 1

X 1 4

X 1 5

X 1 6

X 2 1 X 2 2 X 2 3
Q 2 2

X 2 1

X 2 1

X 2 1

X 2 1

X 2 2

X 2 2

X 2 2

X 2 3X 2 3

 
Fig. 3 Input Data Sequence  in one step for p= 6 

Each Mac unit can be pipelined in order to increase the 
clock frequency. The number of pipeline stages of MAC units 
can be p/2+1 stages while each result will be used to be added 
to the next sample’s respective result which is ready p/2+1 
clock cycles later. 

This hardware also allows parallel matrix multiplication. 
The input data rate is again two elements per each step and no 
hardware overhead is forced. The difference is that there is no 
data transfer between processing elements and all elements 
work independently. Each step in matrix multiplication can be 
p/2 or p clock cycles which depend on the number of registers 
in each processing unit. The architecture of each PU is 
displayed In Fig. 4. 

The whole system for LOLIMOT contains a few processing 
unites (PU)s ; each unit contains some processing engines and 
one multiplier. These units are able to be combined and make 
a bigger group or work standalone with same input data. The 
system can support any number of p but maximum utilization 
of processing units is for p ranged between 8 and 32. It 
contains a distributed cache and an input cache, both 
connected to processing engines with a common bus. The 
distributed cache contains the temporary results and is 
distributed among processing groups. These two buses give 
the ability to the system to do different types of computations 
concurrently in system. 

IV. EXPERIMENTAL RESULTS 
In this section software analysis of the main three factors of 

the network effects are discussed for a Speed Identification of 
Induction Motor by means of d-q axis Stator Current and 
Voltage[14].The duration of training run on the general 
purpose computer with software and our proposed hardware 
are compared too. It is noticeable that the reconfigurable 
design of this hardware utilizes the processing elements for 
every input dimensions. 

The fixed parameters of the network are M=50 neurons, 
P=8 dimensions, and N=200 input samples. Each time one 
parameter is changed and two others are kept fixed. The feed-
forward training duration shown in the tables are multiplied 
by 1000. 

PU MULT,REG

REG3 REG2 REG1 REG0
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Fig. 4 PU architecture 
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L O O K  
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C O N T R O L L E R
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Fig. 5 LOLIMOT engine is offered as an IP core 

In Fig. 6 the effect of dimension of input data is shown. The 
amount of complexity grows exponentially when the 
dimension is increased.  

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008 

146International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f



 

 

0

20

40

60

80

100

120

4 8 12 16
Dimesnion

D
ur

at
io

n

 Learning
Feedforward

 
Fig. 6 Variation of training time with input dimension 

 
In Fig. 7 the effect of input samples number on duration is 

shown.  
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Fig. 7 Variation of training time with size of input space 
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Fig. 8 Variation of training time with the number of Neurons 

TABLE I 
SYNTHESIS RESULTS FOR SOME STRATIX FPGA DEVICE  

 Logic 
Cell 

Usage 

Memory 
 Bit Usage 

Clock  
Frequency 

Device Total 
 No of 
LCs 

Total 
No of  

Memory 
Bits 

1PU-
8bit 

16.65
% 

0.45% 92.5 
MHz 

EP1S10F
780C 

10570 920448 

1PU-
16bit 

52.38
% 

0.89% 76.4 MHz EP1S10F
780C 

10570 920448 

1PU-
32bit 

46.84
% 

0.48% 63.3 MHz EP1S40F
1020C 

41250 342374
4 

 
The last factor is the number of neurons in the network its 

effect behaves different in training phase and in feed-forward 
phase. In the training phase the duration grows exponentially 
but in feed-forward it grows linear when the number of 
neurons is increased. The results are shown in Fig. 8. 

The synthesis results on Stratix FPGA are presented in 
Table I and the total amount of clock cycles for training the 
algorithm are presented in Table II. 

 
TABLE II 

NUMBER OF CLOCK CYCLES USED FOR TRAINING OF A SINGLE PU SYSTEM 
M=20 p=4 p=8 p=16 p=32 

N=200 776K 2038K 13841K 84552K 

N=1000 3384K 11806K 70091K 447560K 

 
Form Table II and from Fig. 8 we can pick N=200 M=20 

and p=8  to compare the duration of training the network with 
our proposed design with 16 bit fixed point words and the 
general purpose computers. 

About 2038 thousand clocks are needed at 76.4 Mhz speed 
which takes 0.026 seconds for training the network with 1-PU 
system and 200 input samples. In the other hand computing 
the network with software lasts 7.06 seconds which is about 
271 times longer. It is obvious that if the number of Pus in the 
system increases the duration time is divided by their number. 
At least there are 2 PUs in the system which can improve the 
training almost two times faster. 

V. CONCLUSION 
In this paper, hardware implementation of local linear 

neuro-fuzzy model with LOLIMOT algorithm was presented. 
The learning method used in our system was an on-chip 
implementation of LLNFM. The architecture supports both 
feed-forward phase and leaning phase computations with 
reconfigurable processing engines. The architecture supports 
matrix inversion, multiplication and matrix power. Synthesis 
results showed that the hardware overhead for learning phase 
is acceptable. Despite this low overhead, the engines alleviate 
the on-chip learning problem with their high performance 
which is at least 250 times faster. Our hardware is designed 
and implemented in a reusable manner which can be 
employed in many other neuro-fuzzy systems that require 
high-performance matrix computations. 
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