

Abstract—Local Linear Neuro-Fuzzy Models (LLNFM) like

other neuro- fuzzy systems are adaptive networks and provide robust
learning capabilities and are widely utilized in various applications
such as pattern recognition, system identification, image processing
and prediction. Local linear model tree (LOLIMOT) is a type of
Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its
efficiency compared with other neuro fuzzy networks in learning the
nonlinear systems and pattern recognition. In this paper, a dedicated
reconfigurable and parallel processing hardware for LOLIMOT
algorithm and its applications are presented. This hardware realizes
on-chip learning which gives it the capability to work as a standalone
device in a system. The synthesis results on FPGA platforms show its
potential to improve the speed at least 250 of times faster than
software implemented algorithms.

Keywords—LOLIMOT, Hardware, Neuro-Fuzzy Systems,
Reconfigurable, Parallel.

I. INTRODUCTION
NTELLIGENT and highly autonomous systems are playing
a great role in both industrial and academic settings of

today. Artificial neural networks, fuzzy systems [1] and neuro
fuzzy systems [2] ,[3], demonstrate some main fields of
computational intelligence, which have many applications
ranging from engineering to economics, from forecasting to
control and system identification [4], [5]. These techniques
provide powerful tools for non-parametric analysis of
nonlinear systems model-free processing and control of
uncertain systems and plants. In many cases, proofs that these
systems are universal approximators and after learning act in
asymptotically optimal manner in Bayesian senses are readily
available. On the negative side, the black box and model-free
approach underlying the use of these tools means that there
are few theorems and methods for assuring stability and
robustness or carrying out post optimality analysis on the total
systems where these tools have been used. Despite these
applications and facilities, many practical applications require
a large computational power to overcome complexity or real-
time constraints. Hardware implementation is a good solution
for these restrictions [4], [7] and [8].

In order to take advantage of redundancies in the solution
and improve the performance of these systems to let them take
critical roles in real-time and dynamic system control and

Manuscript received April 20, 2006.
A. Pedram, M. Jamali, C. Lucas, S. M. Fakhraie, Department of Electrical

and computer Engineering University of Tehran, Tehran, Iran. (e-mail:
a.pedram@ece.ut.ac.ir, m.jamali@ece.ut.ac.ir,
tarannom.pedram@siemens.com, fakhraie@ut.ac.ir, lucas@ipm.ir).

prediction and fully exploit the parallel nature of these types
of fuzzy systems a dedicated hardware is needed. The
hardware should also have high classification rate and be able
to solve different types of problems with its reconfigurable
architecture.

Generally there are three methods for training neuro-fuzzy
systems: off-line, on-line and on-chip training. On-line
training runs the learning with an algorithm on an external
computer interfaced to the hardware device to be trained. The
latter computes the feed forward step, while the external
computer updates weights for training step. On-chip training
trains the network on the chip itself, by means of appropriate
circuits which must be implemented on the chip. No external
computer is needed. This solution requires a more complex
hardware [8].

In this paper, the hardware implementation of the
LOLIMOT algorithm is presented [3]. This algorithm divides
the input space into local linear models which has a higher
performance and needs lower neuron count compared to
normal neural networks in terms of learning a mapping of the
input space [9]. This algorithm can be used in all TSK neuro-
fuzzy networks with real-time applications such as [10] and
[11], which persuade the need of dedicated hardware systems
to implement this algorithm on it. The nature of the algorithm
is based on matrix computations. Although, matrix
computations are elaborated in several hardware
implementations [12], there is not an efficient dedicated
hardware implementation for LOLIMOT algorithm that
gathers the matrix computation implementations in a single
framework. On the other hand, exploiting the native
parallelism of the whole LOLIMOT algorithm is the other
main motive for implementation of a dedicated hardware.
While preserving the ability of the single matrix operations in
our proposed hardware system such as matrix multiplication
and matrix inversion, also our implemented hardware system
is a dedicated hardware realization of whole LOLIMOT
algorithm. We employ fine and important hardware design
techniques to improve the performance of the realized
LOLIMOT hardware. It can be used as a matrix-computation
system with the capability of realizing matrix multiplication
and inversion and the other operations that can be categorized
in this class. The processing engines of our LOLIMOT
hardware system are design in a way that can bear the
computation requirement of the on-chip learning. In fact, in
the learning phase they are reconfigured to accomplish the
computations required for learning from the input samples.
One of the main advantages of our hardware realization is on-
chip learning capability.

Local Linear Model Tree (LOLIMOT)
Reconfigurable Parallel Hardware

A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, and C. Lucas

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

143International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

II. MATHEMATICAL DESCRIPTION
The network output is calculated as a weighted sum of the

outputs of the local linear models, where the validity function
is interpreted as the operating point dependent weighting
factors. The validity functions are typically chosen as
normalized Gaussians.

The most important factor for the success of LOLIMOT is
divide and conquer strategy that is used in it. LOLIMOT is an
incremental tree-construction algorithm that partitions the
input space by axis-orthogonal splits [3].

In this section, a mathematical formulation of LLNFM with
LOLIMOT learning algorithm is described [3]. The
fundamental approach with locally linear neuro-fuzzy models
is dividing the input space into small subspaces with fuzzy
validity functions. Any produced linear part with its validity
function can be described as a fuzzy neuron. Thus the whole
model is a neuro-fuzzy network with one hidden layer and a
linear neuron in the output layer which simply calculates the
weighted sum of the outputs of locally linear models. The
Network structure is shown in Fig. 1.

Fig. 1 Network structure of a static local linear neuro-fuzzy with M

neurons for p inputs [4]

In (1) input-output relation of LLNFM is represented. In
this formula M is number of neurons,

T
puuuu]...[21= is the model input, p is number of

input dimension, N is the number of input samples and

ijω denotes the weights of i th neuron [3].

∑
=

Φ=+++++=
M

i
iipipiiiii uyyuuuuy

1
3322110)(ˆ,... ωωωωω) (1)

The validity functions are chosen as normalized Gaussians.
Normalization is necessary for a proper interpretation of
validity functions. In (2) and (3) validity function formulation
is represented.

∑
=

=Φ M

j
j

i
i

u

uu

1

)(

)()(
μ

μ (2)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
××⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
= 2

2

2
1

2
11

2
)(

exp
2

)(
exp)(

ip

ipp

i

i
i

cucu
u

σσ
μ L (3)

Each Gaussian validity function has two parameters; centre

ijc and standard deviation ijσ .Also there are pM × weight
parameters of the nonlinear hidden layer. Optimization or

learning methods are used to adjust fine tuning of two sets of
parameters, ijω weights and the parameters of validity

functions.
Local optimization of linear parameters is simply obtained

by Least squares technique. The global parameter vector
contains)1(+× pM elements. In (4) these parameters are
shown.

[]MpMp ωωωωωωωω 0212011110= (4)

Associated regression matrix X for N measured data
samples is formulated in (5) and (6). Thus the weights will be
obtained by solving (7) and (8) as shown in (9).

]...[21 MXXXX = (5)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)(1

)2(...)2(1
)1(...)1(1

1

1

1

NuNu

uu
uu

X

p

p

p

i MMM

 (6)

ω̂ˆ QXy = (7)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Φ

Φ
Φ

=

))((...00

0...))2((0
0...0))1((

Nu

u
u

Q

i

i

i

i MMM

 (8)

QyXQXX TT 1)(ˆ −=ω (9)
Several methods can be used to optimize the premise rules.

Tree based methods are appropriate for their simplicity and
intuitive constructive algorithm. LOLIMOT is an incremental
based on three iterative steps: first the worst Local Linear
Model is defined according to local loss functions. This LLM
neuron is selected to be divided. In the second step all
divisions of this LLM on input space are constructed and
checked. Finally the best division for the new neuron must be
added. For further information about LOLIMOT algorithm
refer to [3]. In Fig. 2 the first five iterations of LOLIMOT
algorithm for a two dimensional input space is shown.

Fig. 2 Operation of the LOLIMOT algorithm in the first five

iterations for a two dimensional input space [4]

The computation complexity of LOLIMOT grows linearly
with number of neurons. This computation complexity is
comparable with other algorithms [3]. Time complexity of
LOLIMOT is represented in (10).

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

144International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

)2())1(2(43 MpOpMpO ≈+ (10)
The remarkable properties of locally linear neuro-fuzzy

model, its transparency and intuitive construction, lead to the
use of least squares for rule antecedent parameters and
incremental learning procedures for rule consequent
parameters [3].

A. Complexity Analysis
The main complexity of LOLIMOT algorithm is to

calculate Equation (10) for MMp ×⎥⎦
⎥

⎢⎣
⎢ +

×
2

1 times, which

by itself consists of different types of matrix computations
such as matrix-matrix multiplication, matrix-vector
multiplication and matrix inversion. It is noticeable that the
matrix in (9) is a diagonal matrix which makes

)()1(NN
T

Np QX ××+ a simple multiplication of each column of

XT by the same diagonal index element of matrix Q, this
means (11) is a matrix power operation on matrix XT with
extra multiplication of diagonal element of matrix Q into each
column of XT. In this paper, we name the operation (11)
“pow.“ The main computations of the algorithm take place in
(11) and (12).

)1()1()1()1()(+×++×××+ pppNNN
T

Np XQX (11)

1)1(1)1()(×+×××+ pNNN
T

Np yQX (12)

The pow is a Symmetric matrix, so the computation of pow
is reduced to about half of the number of elements of the
result matrix. Consider that ijpow is the i th row and j th
column element of pow which is computed with the Equation
(13).

kkkj

N

k
kiij QXXpow ××= ∑

=1
 (13)

Equation (13) indicates that the matrix power can be
computed in N steps such that in the l th step, the l th sample
vector (l th row) of matrix X and the l th diagonal element of
matrix Q are needed to produce llljli QXX ×× for different

i ’s and j ’s. All step’s results are added together to make the
final result of pow. Total amount of computations in each step
is about

2
)2()1(+×+ pp multiply accumulate operation which

is the number of different combinations of liX and ljX , In
the other hand, elements of matrix in (12) can be computed
with the same manner shown in Equation (14) ,

1
1

11
)(kkk

N

k
kiiNNN

T
Np yQXyQX ××=∑

=
××× (14)

B. Matrix Inversion
The second issue in computing (10) is to compute

1)(−XQX T or the inverse of pow. While matrix power is a
Symmetric Positive Definitive (SPD), its inverse can be
computed by decomposing it into its Cholesky factor. Instead
of seeking arbitrary lower and upper triangular factors L and

U, Cholesky Decomposition constructs a lower triangular
matrix L whose transpose LT can itself serve as the upper
triangular part [13]. In other words pow=L.LT and pow-1=L-

T.L-1. The pow is a)1()1(+×+ pp matrix and is very small
compared to matrix X so computing its inverse is not a
bottleneck in this problem, while Matrix inversion can be
solved by matrix multiplication engine in O(n3).

C. Updating the Coefficients
The μ of new neurons have just a difference in one of the

dimensions or exponential phrases. For example if the x th
dimension is the dimension which should be divided into two
neurons. The new μ s can be computed as presented in
Equations (15) to (18).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

2

2

2
)(exp

ix

ixx

old

cu
temp

σ

μ
 (15)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
×= 2

1

2
11

)(2
)(exp

ix

ixx
newi

cutemp
σ

μ (16)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
×=+ 2

2

2
22

1 2
)(exp

ix

ixx
M

cutemp
σ

μ (17)

1)()(
1

1

1
)()(+

=

+

=

++−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑ Mnewioldi

old

M

j
j

new

M

j
j uu μμμμμ (18)

For other neurons just the normalization dividend is
changed and as described in Section 2 the input matrix of each
Neuron is the same as others. The only difference is the matrix
Qi which is different for neurons and as shown in Figure 4.
Each diagonal element of Qi matrix is fed to the processing
group just in one clock cycle and the other inputs are matrix
X’s elements.

III. ARCHITECTURE DESIGN
This design can be mapped in to a scalable and also

reconfigurable array of processing elements by providing
suitable connections between processing elements in order to
take advantage of data dependencies. The key idea in the new
design is to fill the presented design with additional PEs and
make a matrix of processing engines which is in a regular
arrangement of processing elements. Then the matrix of PEs is
reduced to a chain of PEs and the computations of each step
are done in multiple cycles. This new method is presented in
theorem 1.

Theorem 1: Total computations of matrix power for matrix

ppX (p is even) can be done with p/2 processing units and a
multiplier in p/2+1 steps and data rate is two elements per
each step. PEs are connected in an array, each PE contains
two multipliers, two adders and two (p/2+1) registers.
Proof:

The key idea in Theorem 1 is to bring p/2 of the N th
sample at first step and compute their multiplication and then
bring each of the other p/2 elements in a step and let the
processing units pass their input data to their neighbours in
order to reuse it.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

145International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

Each result of the MAC unit is saved in its own register and
will be accumulated with the next p dimensional sample
temporary value. The total amount of computations in (p/2+1)
clock cycles is equal to the desired amount of computation to
calculate matrix pow in each step, which is

)1(
2

22
2

)1
2

()1
2

(+×
+

=××+++ ppppp as shown in Fig. 3.

Just one additional step is needed to compute XTQy in which
the input of all MACs is y.

X 1 1 Q 1 1 X 1 2 Q 1 1 X 1 1 Q 1 1

X 1 1 X 1 4 Q 1 1 X 1 2 X 1 4 Q 1 1 X 1 3 X 1 4 Q 1 1

X 1 2 X 1 2 Q 1 1X 1 1 X 1 1 Q 1 1 X 1 3 X 1 3 Q 1 1

X 1 2 X 1 3 Q 1 1 X 1 4 X 1 4 Q 1 1X 1 1 X 1 2 Q 1 1

X 1 3 X 1 5 Q 1 1X 1 1 X 1 5 Q 1 1 X 1 2 X 1 5 Q 1 1

X 1 5 X 1 4 Q 1 1 X 1 5 X 1 5 Q 1 1X 1 1 X 1 3 Q 1 1

X 1 3 X 1 6 Q 1 1X 1 1 X 1 6 Q 1 1 X 1 2 X 1 6 Q 1 1

X 1 6 X 1 5 Q 1 1 X 1 6 X 1 6 Q 1 1X 1 6 X 1 4 Q 1 1

X 2 3 Q 2 2X 2 1 Q 2 2 X 2 2 Q 2 2

X 1 1 X 1 2 X 1 3

Q 1 1

X 1 4

X 1 5

X 1 6

X 2 1 X 2 2 X 2 3
Q 2 2

X 2 1

X 2 1

X 2 1

X 2 1

X 2 2

X 2 2

X 2 2

X 2 3X 2 3

Fig. 3 Input Data Sequence in one step for p= 6

Each Mac unit can be pipelined in order to increase the
clock frequency. The number of pipeline stages of MAC units
can be p/2+1 stages while each result will be used to be added
to the next sample’s respective result which is ready p/2+1
clock cycles later.

This hardware also allows parallel matrix multiplication.
The input data rate is again two elements per each step and no
hardware overhead is forced. The difference is that there is no
data transfer between processing elements and all elements
work independently. Each step in matrix multiplication can be
p/2 or p clock cycles which depend on the number of registers
in each processing unit. The architecture of each PU is
displayed In Fig. 4.

The whole system for LOLIMOT contains a few processing
unites (PU)s ; each unit contains some processing engines and
one multiplier. These units are able to be combined and make
a bigger group or work standalone with same input data. The
system can support any number of p but maximum utilization
of processing units is for p ranged between 8 and 32. It
contains a distributed cache and an input cache, both
connected to processing engines with a common bus. The
distributed cache contains the temporary results and is
distributed among processing groups. These two buses give
the ability to the system to do different types of computations
concurrently in system.

IV. EXPERIMENTAL RESULTS
In this section software analysis of the main three factors of

the network effects are discussed for a Speed Identification of
Induction Motor by means of d-q axis Stator Current and
Voltage[14].The duration of training run on the general
purpose computer with software and our proposed hardware
are compared too. It is noticeable that the reconfigurable
design of this hardware utilizes the processing elements for
every input dimensions.

The fixed parameters of the network are M=50 neurons,
P=8 dimensions, and N=200 input samples. Each time one
parameter is changed and two others are kept fixed. The feed-
forward training duration shown in the tables are multiplied
by 1000.

PU MULT,REG

REG3 REG2 REG1 REG0

Coeff
before

fifo

This
coeff

M
A

C
M

AC

M
A

C
M

AC

M
AC

M
A

C

M
A

C
M

AC

PE3 PE2 PE1 PE0

Fig. 4 PU architecture

A R R A Y O F P A R A L L E L
P R O C E E S IN G U N IT S

IN P U T C A C H E

F R O M T H E
P R O C E S S O R

M E M O R Y
IN T E R F A C E

F U Z Z Y
L O O K

U P

C O N T R O L L E R

L O C A L B U S

C O M M O N B U S

Fig. 5 LOLIMOT engine is offered as an IP core

In Fig. 6 the effect of dimension of input data is shown. The
amount of complexity grows exponentially when the
dimension is increased.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

146International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

0

20

40

60

80

100

120

4 8 12 16
Dimesnion

D
ur

at
io

n

 Learning
Feedforward

Fig. 6 Variation of training time with input dimension

In Fig. 7 the effect of input samples number on duration is

shown.

1

10

100

1000

100 200 400 800
SAMPLE NUMBER

D
ur

at
io

n

 Learning
Feedforward

Fig. 7 Variation of training time with size of input space

0

20

40

60

80

100

120

10 20 40 80
Neuron Number

D
ur

at
io

n

learning
feedforward

Fig. 8 Variation of training time with the number of Neurons

TABLE I
SYNTHESIS RESULTS FOR SOME STRATIX FPGA DEVICE

 Logic
Cell

Usage

Memory
 Bit Usage

Clock
Frequency

Device Total
 No of
LCs

Total
No of

Memory
Bits

1PU-
8bit

16.65
%

0.45% 92.5
MHz

EP1S10F
780C

10570 920448

1PU-
16bit

52.38
%

0.89% 76.4 MHz EP1S10F
780C

10570 920448

1PU-
32bit

46.84
%

0.48% 63.3 MHz EP1S40F
1020C

41250 342374
4

The last factor is the number of neurons in the network its

effect behaves different in training phase and in feed-forward
phase. In the training phase the duration grows exponentially
but in feed-forward it grows linear when the number of
neurons is increased. The results are shown in Fig. 8.

The synthesis results on Stratix FPGA are presented in
Table I and the total amount of clock cycles for training the
algorithm are presented in Table II.

TABLE II

NUMBER OF CLOCK CYCLES USED FOR TRAINING OF A SINGLE PU SYSTEM
M=20 p=4 p=8 p=16 p=32

N=200 776K 2038K 13841K 84552K

N=1000 3384K 11806K 70091K 447560K

Form Table II and from Fig. 8 we can pick N=200 M=20

and p=8 to compare the duration of training the network with
our proposed design with 16 bit fixed point words and the
general purpose computers.

About 2038 thousand clocks are needed at 76.4 Mhz speed
which takes 0.026 seconds for training the network with 1-PU
system and 200 input samples. In the other hand computing
the network with software lasts 7.06 seconds which is about
271 times longer. It is obvious that if the number of Pus in the
system increases the duration time is divided by their number.
At least there are 2 PUs in the system which can improve the
training almost two times faster.

V. CONCLUSION
In this paper, hardware implementation of local linear

neuro-fuzzy model with LOLIMOT algorithm was presented.
The learning method used in our system was an on-chip
implementation of LLNFM. The architecture supports both
feed-forward phase and leaning phase computations with
reconfigurable processing engines. The architecture supports
matrix inversion, multiplication and matrix power. Synthesis
results showed that the hardware overhead for learning phase
is acceptable. Despite this low overhead, the engines alleviate
the on-chip learning problem with their high performance
which is at least 250 times faster. Our hardware is designed
and implemented in a reusable manner which can be
employed in many other neuro-fuzzy systems that require
high-performance matrix computations.

REFERENCES
[1] T. Takagi, M. Sugeno, “Fuzzy identification of systems and its

applications to modeling and control,” IEEE Tran. Systems, Man and
Cybernetics, vol. 15, pp. 116-132, 1985.

[2] J. R. Jang, “ANFIS: Adaptive network based fuzzy inference system,”
IEEE Tran. Systems, Man and Cybernetics, vol. 23, no. 3, 1993, pp. 665-
685.

[3] O. Nelles, Nonlinear system identification. Berlin: Springer Verlag,
2001.

[4] C. Lucas, R. M. Milasi and B. N.Araabi, "Intelligent modeling and
control of washing machine using LLNF modeling and modified
BELBIC," Asian Journal of Control, vol.8, no.4, December 2005.

[5] O. Nelles, “Local linear model tree for on-line identification of time
variant nonlinear dynamic systems,” International Conference on
Artificial Neural Networks (ICANN), pp. 115-120, Bochum-Germany,
1996.

[6] L. M. Reyneri, “Implementation issues of neuro-fuzzy hardware: Going
toward hw/sw codesign,” IEEE Trans Neural Networks, vol. 14, no. 1,
pp. 176–194, Jan. 2003.

[7] S. M. Fakhraie and K. C. Smith, VLSI-Compatible Implementations for
Artificial Neural Networks. Norwell, Massachusetts: Kluwer Academic
Publishers, 1997.

[8] L. M. Reyneri, Neuro-fuzzy hardware: design, development and
performance, in Proc. Of FEPPCON III, Skukuza (South Africa), 12-15
July 1998.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

147International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

[9] O. Nelles, “Nonlinear system identification with local linear neuro-fuzzy
models,” PhD Thesis, TU Darmstadt, Shaker Verlag, Aachen, Germany,
1999.

[10] C. H. Lee, W. Y. Lai, C. C. Chen, “Lossless image coding via adaptive
Takagi-Sugeno fuzzy neural network predictor”, Proc. of the. 2004,
IEEE. International Conference on Networking, Sensing. &. Conrrol.
Taipei,. Taiwan, March. 21-23, 2004.

[11] I. Nedeljkovic, “Image classification based on fuzzy logic,” in Proc.
Geo-Imagery Bridging Continents XXth ISPRS Congress, 12-23, Turkey,
Istanbul, july, 2004.

[12] W. Xiaofang, S. G. Ziavras,” Performance optimization of an FPGA-
based configurable multiprocessor for matrix operations,” Proc. 2003
IEEE International Conference on Field-Programmable Technology
(FPT), pp 303 – 3-6, dec. 2003.

[13] B. P. Flannery, Numerical Recipes in C/C++, William H. Press, 2005.
[14] T. Abbasian, F.R. Salmasi, M.J. Yazdanpanah, “Stability analysis of

sensorless IM based on adaptive feedback linearization control with
unknown stator and rotor resistances,“ Industry Applications
Conference, 2005. Fourtieth IAS Annual Meeting, vol. 2, pp 985 – 992,
Oct. 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:1, 2008

148International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

13
9.

pd
f

