
Abstract—When a small H/W IP is designed, we can develop an
appropriate verification environment by observing the simulated
signal waves, or using the serial test vectors for the fixed output. In the
case of design and verification of a massive parallel processor with
multiple IPs, it’s difficult to make a verification system with existing
common verification environment, and to verify each partial IP. A
TestDrive verification environment can build easy and reliable
verification system that can produce highly intuitive results by
applying Modelsim and SystemVerilog’s DPI. It shows many
advantages, for example a high-level design of a GPGPU processor
design can be migrate to FPGA board immediately.

Keywords—Virtual Simulation, Verification, IP Design, GPGPU

I. INTRODUCTION

STABLISHING a verification environment provides a
debugging mechanism for correct results from a processor and
also a foundation for sharing a developing project to

participated developing engineers.
To develop a processor, the design of processor IP must be

accompanied with developing of a compiler and its
applications. Proper commands should be defined for the
compiler. These commands depend on the implementation of a
processor. The application can be developed based on the
design of a compiler and a processor. These applications are
necessary to verify the design of a processor.

A parallel development is needed for the efficiency. In order
to develop a system in parallel, independent development
platform must be constructed, so that each component can be
developed without consideration of a whole system. In order
words, a processor, a complier, and its applications should be
developed at the same time. For the parallel development,
unrelated independent jobs needs to be designated as a
pre-proceed step. The design of a processor does not start from
the design of HDL. The design of a compiler and its applications
do not consider the design of the processor at the beginning
stage.

Fig. 1 shows the progress steps of IP development for the
design of a processor as a parallel step. For the completion of a
processor, the steps are divided into a preparation of parallel
steps and an independent developing platform.

Kwang Yeob Lee is with the Computer Engineering Department,
Seokyeong University, Seoul, S. Korea (e-mail:kylee@ skuniv.ac.kr).

Tae Ryoung Park is with the Computer Engineering Department,
Seokyeong University, Seoul, S. Korea (e-mail:trpark@ skuniv.ac.kr).

Jae Chang Kwak is with the Computer Science Department, Seokyeong
University, Seoul, S. Korea (e-mail:jckwak@ skuniv.ac.kr).

Yong Seo Koo is with the Electronics Engineering Department, Dankook
University, Gyeonggi-do, S. Korea (e-mail:yskoo@ dankook.ac.kr).

Upper part developers design overall structure of a processor,
and construct the system using C language. The constructed C
modules are distributed to lower part developers. Lower part
developers implement HDL with the assigned C modules and
repeat verifications and designs with the system through
DPI(Direct Programming Interface) of System Verilog[1-2].
They complete a processor by collecting the sources of
constructed HDLs.

Fig. 1 Verification steps for the efficient design

This mechanism takes a time to construct an initial
environment, but a rapid and stable development is possible by
the parallel process. We implement a Test Drive System[3] to
construct these parallel developments of GPGPU(General
Purpose computing on Graphics Processing Unit)[4].

II. C IMPLEMENTATION THRU INTERPRETING ASSEMBLER

Executable example programs are needed for verification of a
processor. For these example programs, a simplified assembler

Kwang Y. Lee, Tae R. Park, Jae C. Kwak, and Yong S. Koo

A Virtual Simulation Environment for a Design
& Verification of a GPGPU

E

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:6, 2011

611International Scholarly and Scientific Research & Innovation 5(6) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

6,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
66

.p
df

is required to implement machine instructions for function
commands. Since the processor is at the developing stage,
instruction fields are not yet set up. Whenever the definitions of
instructions are modified, the assembler should be changed. At
the worst case, the assembler is needed to be rewritten
completely.

In practice, detailed parts of the design of GPGPU are kept
changed. Development of general assembler should be
postponed until the completion of processor architecture. But a
certain type of simplified assembler is still needed for the
verification of the processor. This assembler must be
independent to the design of GPGPU.

As a solution, we implement the assembler as an interpreter.
Syntax of assembler and Conversion rules to machine language
are separated into different files, so that the development of
assembler and design of processor can be preceded
independently.

With this interpreting assembler, a simple program can be
written by writing a script of the assembler. But it is difficult to
use branch and repeat instructions. C implementation is
considered to write programs easily. A general compiler is
implemented into two programs, object generation program that
translates C codes into intermediate codes and linker program
that converts the intermediate codes into binary codes. Since we
use an interpreting method, C syntax is implemented by the
interpreting assembler. The interpreting assembler converts C
codes into syntax of the assembler.

III. INTEGRATED VERIFICATION SYSTEM FOR TEST DRIVE

For rapid and stable processor development, designs should
be proceeded in parallel and independently. A verification

system is needed to provide a development platform and
communication channels to developers.

Fig.2 The role of test drive system

Fig.2 shows the structure of system level design to verify a
group of software and hardware development together. In order
to make an interface between two different languages, C and
Verilog HDL, DPI(Direct Programming Interface) of
SystemVerilog is used. DPI implements C functions into DLL
(Dynamic Library Link) file. DPI provides the method for HDL
to call these functions.But there are incompatibilities at the
hardware composition in the syntax of SystemVerilog(*.sv) and
Verilog(*.v). We introduce a source wrapping method to debug
HDL.

As shown at the above example, we implement
SystemVerilog source for debugging between the calling part
and the implementation part, so that data extraction is possible
for the debugging. In the hardware composition, the
composition into FPGA is possible by removing debugging
codes through the elimination of the definition of
‘_DEBUG_TESTDRIVE_’.

Fig. 3 Verification steps using test drive

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:6, 2011

612International Scholarly and Scientific Research & Innovation 5(6) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

6,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
66

.p
df

The verification of test drive includes 8 steps as shown in Fig.
3.

Each step is as follows:
. A project is created. The size of system memory and the str

ucture of output display are set at this step.
. When test drive opens the project, the system memory is ge

nerated as specified at the previous step. This memory stru
cture has the same size of FPGA. It has an independent ad
dress space from the host PC.

. At the simulation, an application is called and the verificati
on of emulation, simulation, and FPGA is executed selecti
vely on the system driver as setting at test drive. The HDL
module, which is implemented by multi-core with bus, is d
erived by Simulator(ModelSim).

. The called HDL module calls Virtual Library DLL to substi
tute unimplemented part by debugging related functions or
HDL into the function.

. Virtual Library shares the system memory generated at the t
est drive.

. The results of HDL are stored at the shared system memory.

. The stored result can read by the test drive.

. Simulation results can be checked through the display.

The above verification steps provide an environment to drive
every aspect of development processes. All developers can
exchange their feedbacks through this verification system.

Since the processes from multi-core to bus interface can be
verified at the simulation, FPGA is applied directly without any
further verifications, as shown is Fig. 4.

Fig. 4 Simulation using test drive and verification of FPGA

IV. VERIFICATION OF GPGPU MULTICORE PROCESSOR

A. Verification of multi-core simulation

The verification system of test drive is used to verify
multi-core. A number of contents for the proposed GPGPU are
implemented by the modified C language. The performance and
efficiency are measured by the simulation. Simulation
environment includes a 64-bits bus with DIMM memory
structure and a 200MHz clock speed[5].

Verification of multi-core efficiency

Fig. 5 Normal mapping computation

Fig. 5 shows the implementation of normal mapping from
‘Digital Emily’source in the movie‘Matrix’.

The above simulation uses dual-phases and memory
pre-fetching for the performance optimization[6].

Fig. 6 Performance of normal mapping(all functions is
included)

Fig. 6 shows the performance of the normal mapping
program based on the number of core. Since the bandwidth of
the system bus is 64-bits, the performance doesn’t increase
linearly by the number of core. But each core shows 95.2%
performance improvement, which indicates excellent core
efficiency. All processors show 95% efficiency until the limit of
bus usage is reached. The utilization of the processor and bus
can be improved over 90%.

Performance verification of memory pre-fetch and dual-phase

Fig. 7 shows the overall efficiency is lowered below 90%
without using memory pre-fetch. At the below 10 cores
configuration, the performance reduction per core is about 1%,
which twice bigger than with memory pre-fetch. This reduction
is caused by the wait time for the memory access. This program
shows 16% improvement of overall performance.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:6, 2011

613International Scholarly and Scientific Research & Innovation 5(6) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

6,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
66

.p
df

Memory pre-fetch is a technique to implement a Memory
Latency Hiding. In the multi-thread environment[7], when a
thread requests to access the memory, other threads also can
request the memory access at the same time. Therefore one
memory operation could take a very long clock cycles, even
thousands of them. It is called an idle time by a memory
operation. There are two methods to utilize this idle time. One
of them is a context switching to activate another thread for the
performance improvement as a hardware solution. This solution
is necessary for current GP-GPUs to improve the performance.

Fig. 7 Performance of normal mapping (without memory pre-fetch)

B. Verification of multi-core execution

Fig. 8 the configuration of FPGA verification environment

As shown in Fig. 8, Virtex-6 board ML605 of Xilinx is used
to verify real executions. The proposed GPGPU has seven

cores. Input data from PCI Express Bus at Window environment
can be checked at the monitor, connected to DVI port. The
results are compared to the results of simulation of test drive, in
order to verify real executions.

TABLE I
MULTI-CORE REGISTERS FOR FPGA VERIFICATION

Since the optimal number of registers has not been decided,
the size of registers is designed at the maximum number at this
moment, as shown in Table 2. When the optimal number of
registers is decided through implementation and verification of
many applications , the size of register will be reduced.
Implemented examples for this report use 42 of GPRs, 1060 of
LMB, 1 of SCs, and 1 of GSC. GMB and LUT are not used.

.

V.CONCLUSION

The proposed multi-core GPGPU is designed for both single
tread and multi-thread operations. It has a flexibility of general
CPU and a high performance of GP-GPU. It shows the similar
performance with the existing GPU.

The existing GPGPU executes a large number of SIMD array
as a single instruction. It is called SIMT(Single Instruction
Multiple Threads) structure in nVidia. With this structure, when
hundreds of processors are integrated on a chip, the space for
the instruction register is reduced. Therefore more processors
can be integrated on a chip, so that it gains more performance.

For the verification, we built our own TestDrive system and it
can do software emulation, hardware simulation and FPGA real
verification by one single program on the same platform. The
FPGA verification system had shown a normal operation with a
GPGPU that is composed of 7 cores at 100MHz operation.

REFERENCES

[1] http://www.systemverilog.org
[2] http://www.doulos.com/knowhow/sysverilog/tutorial/dpi
[3] Hyungki Jeong, Kwang Yeob Lee and Jae Chang Kwak,”Test-Drive

System for a Design & Verification of a GP-GPU Processor,” 2010 SoC
Conference, The institute of Electronics Engineering of Korea, April
2010, pp.40-43

[4] GPGPU, General Purpose Computation Using Graphics Hardware,
http://www.gpgpu.org

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:6, 2011

614International Scholarly and Scientific Research & Innovation 5(6) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

6,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
66

.p
df

[5] Hyungki Jeong, Kwang Yeob Lee and Jae Chang Kwak,”A Multi-thread
Processor Architecture with Dual Phase Variable-Length Instructions,”
ITC-CSCC2008, July 2008, pp.209-212.

[6] Kwang Yeob Lee, Tae Ryoung Park, Jae Chang Kwak, Yong Seo Koo,”A
Design of Multi-threaded Shader Processor with Dual-Phase Pipeline
Architecture,” The First international Conference on Advances in
Multimedia MMEDIA 2009, 20-25 July 2009 colmar, France, pp
121-124.

[7] S. Ryoo, C. I. Rodrigues, S.S. Stone, S.S. Baghsorkhi, S.Z. Ueng,
J.A. Stratton, and W.W. Hwu,”Program optimization space
pruning for a multithreaded GPU,” in Proceedings of the 2008
International Symposium on Code Generation and Optimization,
April 2008, pp. 195-204.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:6, 2011

615International Scholarly and Scientific Research & Innovation 5(6) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

6,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

06
66

.p
df

	v78-28.pdf
	v78-29.pdf
	v78-30.pdf
	v78-31.pdf
	v78-32.pdf
	v78-33.pdf
	v78-34.pdf
	v78-35.pdf
	v78-36.pdf
	v78-37.pdf
	v78-38.pdf
	v78-39.pdf
	v78-40.pdf
	v78-41.pdf
	v78-42.pdf
	v78-43.pdf
	v78-44.pdf
	v78-45.pdf
	v78-46.pdf
	v78-47.pdf
	v78-48.pdf
	v78-49.pdf
	v78-50.pdf
	v78-51.pdf
	v78-52.pdf
	v78-53.pdf
	v78-54.pdf
	v78-55.pdf
	v78-56.pdf
	v78-57.pdf
	v78-58.pdf
	v78-59.pdf
	v78-60.pdf
	v78-61.pdf
	v78-62.pdf
	v78-63.pdf
	v78-64.pdf
	v78-65.pdf
	v78-66.pdf
	v78-67.pdf
	v78-68.pdf
	v78-69.pdf
	v78-70.pdf
	v78-71.pdf
	v78-72.pdf
	v78-73.pdf
	v78-74.pdf
	v78-75.pdf
	v78-76.pdf
	v78-77.pdf
	v78-78.pdf
	v78-79.pdf
	v78-80.pdf
	v78-81.pdf
	v78-82.pdf
	v78-84.pdf

