Search results for: Full car model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7861

Search results for: Full car model

7861 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: Torsional vibration, full-size model, scale model, scaling laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
7860 Complementary Energy Path Adiabatic Logic based Full Adder Circuit

Authors: Shipra Upadhyay , R. K. Nagaria, R. A. Mishra

Abstract:

In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.

Keywords: Adiabatic, CEPAL, full adder, power clock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
7859 Two New Low Power High Performance Full Adders with Minimum Gates

Authors: M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani

Abstract:

with increasing circuits- complexity and demand to use portable devices, power consumption is one of the most important parameters these days. Full adders are the basic block of many circuits. Therefore reducing power consumption in full adders is very important in low power circuits. One of the most powerconsuming modules in full adders is XOR/XNOR circuit. This paper presents two new full adders based on two new logic approaches. The proposed logic approaches use one XOR or XNOR gate to implement a full adder cell. Therefore, delay and power will be decreased. Using two new approaches and two XOR and XNOR gates, two new full adders have been implemented in this paper. Simulations are carried out by HSPICE in 0.18μm bulk technology with 1.8V supply voltage. The results show that the ten-transistors proposed full adder has 12% less power consumption and is 5% faster in comparison to MB12T full adder. 9T is more efficient in area and is 24% better than similar 10T full adder in term of power consumption. The main drawback of the proposed circuits is output threshold loss problem.

Keywords: Full adder, XNOR, Low power, High performance, Very Large Scale Integrated Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064
7858 A New Efficient Scalable BIST Full Adder using Polymorphic Gates

Authors: M. Mashayekhi, H. H. Ardakani, A. Omidian

Abstract:

Among various testing methodologies, Built-in Self- Test (BIST) is recognized as a low cost, effective paradigm. Also, full adders are one of the basic building blocks of most arithmetic circuits in all processing units. In this paper, an optimized testable 2- bit full adder as a test building block is proposed. Then, a BIST procedure is introduced to scale up the building block and to generate a self testable n-bit full adders. The target design can achieve 100% fault coverage using insignificant amount of hardware redundancy. Moreover, Overall test time is reduced by utilizing polymorphic gates and also by testing full adder building blocks in parallel.

Keywords: BIST, Full Adder, Polymorphic Gate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
7857 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
7856 State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness

Authors: Dileep Malkhede, Bhartendu Seth

Abstract:

In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.

Keywords: Diesel engine model, Engine speed control, State feedback controller, Controller robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
7855 Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape

Authors: Ashly Joseph

Abstract:

In the era of digital transformation, full-stack observability has emerged as a crucial aspect of administering modern application stacks. This research paper presents the concept of full-stack observability, its significance in the context of contemporary application stacks, and the challenges posed by swiftly evolving digital environments. In addition, it describes how full-stack observability intends to provide complete visibility and actionable insights by correlating telemetry across multiple domains.

Keywords: Actionable insights, digital transformation, full-stack observability, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
7854 High Speed NP-CMOS and Multi-Output Dynamic Full Adder Cells

Authors: Reza Faghih Mirzaee, Mohammad Hossein Moaiyeri, Keivan Navi

Abstract:

In this paper we present two novel 1-bit full adder cells in dynamic logic style. NP-CMOS (Zipper) and Multi-Output structures are used to design the adder blocks. Characteristic of dynamic logic leads to higher speeds than the other standard static full adder cells. Using HSpice and 0.18┬Ám CMOS technology exhibits a significant decrease in the cell delay which can result in a considerable reduction in the power-delay product (PDP). The PDP of Multi-Output design at 1.8v power supply is around 0.15 femto joule that is 5% lower than conventional dynamic full adder cell and at least 21% lower than other static full adders.

Keywords: Bridge Style, Dynamic Logic, Full Adder, HighSpeed, Multi Output, NP-CMOS, Zipper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3238
7853 Dynamic Model of a Buck Converter with a Sliding Mode Control

Authors: S. Chonsatidjamroen , K-N. Areerak, K-L. Areerak

Abstract:

This paper presents the averaging model of a buck converter derived from the generalized state-space averaging method. The sliding mode control is used to regulate the output voltage of the converter and taken into account in the model. The proposed model requires the fast computational time compared with those of the full topology model. The intensive time-domain simulations via the exact topology model are used as the comparable model. The results show that a good agreement between the proposed model and the switching model is achieved in both transient and steady-state responses. The reported model is suitable for the optimal controller design by using the artificial intelligence techniques.

Keywords: Generalized state-space averaging method, buck converter, sliding mode control, modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2972
7852 Designing of Full Adder Using Low Power Techniques

Authors: Shashank Gautam

Abstract:

This paper proposes techniques like MT CMOS, POWER GATING, DUAL STACK, GALEOR and LECTOR to reduce the leakage power. A Full Adder has been designed using these techniques and power dissipation is calculated and is compared with general CMOS logic of Full Adder. Simulation results show the validity of the proposed techniques is effective to save power dissipation and to increase the speed of operation of the circuits to a large extent.

Keywords: Low Power, MT CMOS, Galeor, Lector, Power Gating, Dual Stack, Full Adder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
7851 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: Pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
7850 Active Suspension - Case Study on Robust Control

Authors: Kruczek A., Stříbrský A., Honců J., Hlinovský M.

Abstract:

Automotive suspension system is important part of car comfort and safety. In this article automotive active suspension with linear motor as actuator is designed using H-infinity control. This paper is focused on comparison of different controller designed for quart, half or full-car model (and always used for “full" car). Special attention is placed on energy demand of the whole system. Each controller configuration is simulated and then verified on the hydraulic quarter car test bed.

Keywords: active suspension, linear motor, robust control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
7849 A Model for Optimal Design of Mixed Renewable Warranty Policy for Non-Repairable Weibull Life Products under Conflict between Customer and Manufacturer Interests

Authors: Saleem Z. Ramadan

Abstract:

A model is presented to find the optimal design of the mixed renewable warranty policy for non-repairable Weibull life products. The optimal design considers the conflict of interests between the customer and the manufacturer: the customer interests are longer full rebate coverage period and longer total warranty coverage period, the manufacturer interests are lower warranty cost and lower risk. The design factors are full rebate and total warranty coverage periods. Results showed that mixed policy is better than full rebate policy in terms of risk and total warranty coverage period in all of the three bathtub regions. In addition, results showed that linear policy is better than mixed policy in infant mortality and constant failure regions while the mixed policy is better than linear policy in ageing region of the model. Furthermore, the results showed that using burn-in period for infant mortality products reduces warranty cost and risk.

Keywords: Reliability, Mixed warranty policy, Optimization, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
7848 MPC of Single Phase Inverter for PV System

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive (UI) single phase inverter (SPI) for a photovoltaic (PV) system at residential/distribution level. The proposed model uses single-phase phase locked loop (PLL) to synchronize SPI with the grid and performs MPC control in a dq reference frame. SPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a full bridge (FB) voltage source inverter (VSI). No PI regulators to tune and carrier and modulating waves are required to produce switching sequence. Instead, the operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a three kW PV system at the input of UI-SPI in Matlab/Simulink. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: Matlab/Simulink, Model Predictive Control, Phase Locked Loop, Single Phase Inverter, Voltage Source Inverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4529
7847 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: Finite element model, rotordynamic system, model reduction, substructuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4052
7846 Design and Implementation of 4 Bit Multiplier Using Fault Tolerant Hybrid Full Adder

Authors: C. Kalamani, V. Abishek Karthick, S. Anitha, K. Kavin Kumar

Abstract:

The fault tolerant system plays a crucial role in the critical applications which are being used in the present scenario. A fault may change the functionality of circuits. Aim of this paper is to design multiplier using fault tolerant hybrid full adder. Fault tolerant hybrid full adder is designed to check and repair any fault in the circuit using self-checking circuit and the self-repairing circuit. Further, the use of conventional logic circuits may result in more area, delay as well as power consumption. In order to reduce these parameters of the circuit, GDI (Gate Diffusion Input) techniques with less number of transistors are used compared to conventional full adder circuit. This reduces the area, delay and power consumption. The proposed method solves the major problems occurring in the most crucial and critical applications.

Keywords: Gate diffusion input, hybrid full adder, self-checking, fault tolerant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
7845 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique

Authors: J.V.R.Ravindra, M.B.Srinivas,

Abstract:

Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.

Keywords: Model order Reduction, RLC, crosstalk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
7844 Determining Full Stage Creep Properties from Miniature Specimen Creep Test

Authors: W. Sun, W. Wen, J. Lu, A. A. Becker

Abstract:

In this work, methods for determining creep properties which can be used to represent the full life until failure from miniature specimen creep tests based on analytical solutions are presented. Examples used to demonstrate the application of the methods include a miniature rectangular thin beam specimen creep test under three-point bending and a miniature two-material tensile specimen creep test subjected to a steady load. Mathematical expressions for deflection and creep strain rate of the two specimens were presented for the Kachanov-Rabotnov creep damage model. On this basis, an inverse procedure was developed which has potential applications for deriving the full life creep damage constitutive properties from a very small volume of material, in particular, for various microstructure constitutive  regions, e.g. within heat-affected zones of power plant pipe weldments. Further work on validation and improvement of the method is addressed.

Keywords: Creep damage property, analytical solutions, inverse approach, miniature specimen test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
7843 Improving Ride Comfort of a Bus Using Fuzzy Logic Controlled Suspension

Authors: Mujde Turkkan, Nurkan Yagiz

Abstract:

In this study an active controller is presented for vibration suppression of a full-bus model. The bus is modeled having seven degrees of freedom. Using the achieved model via Lagrange Equations the system equations of motion are derived. The suspensions of the bus model include air springs with two auxiliary chambers are used. Fuzzy logic controller is used to improve the ride comfort. The numerical results, verifies that the presented fuzzy logic controller improves the ride comfort.

Keywords: Ride comfort, air spring, bus, fuzzy logic controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7842 Scale Effects on the Wake Airflow of a Heavy Truck

Authors: A. Pérard Lecomte, G. Fokoua, A. Mehel, A. Tanière

Abstract:

Automotive experimental measurements in wind tunnel are often conducted on reduced scale. Depending on the study, different similitude parameters are used by researchers to best reproduce the flow at full scale. In this paper, two parameters are investigated, which are Reynolds number and upstream velocity when dealing with airflow of typical urban speed range, below 15 m.s-1. Their impact on flow structures and aerodynamic drag in the wake of a heavy truck model are explored. To achieve this, Computational Fluid Dynamics (CFD) simulations have been conducted with the aim of modeling the wake airflow of full- and reduced-scaled heavy trucks (1/4 and 1/28). The Reynolds Average Navier-Stokes (RANS) approach combined to the Reynolds Stress Model (RSM) as the turbulence model closure was used. Both drag coefficients and upstream velocity profiles (flow topology) were found to be close one another for the three investigated scales, when the dynamical similitude Reynolds is achieved. Moreover, the difference is weak for the simulations based on the same inlet air velocity. Hence, for the relative low velocity range investigated here, the impact of the scale factor is limited.

Keywords: Aerodynamics, CFD, heavy truck, recirculation area, scale effects, similitude parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
7841 A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

Authors: T. Vigneswaran, B. Mukundhan, P. Subbarami Reddy

Abstract:

Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.

Keywords: Arithmetic circuit, full adder, multiplier, low power, very Large-scale integration (VLSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3941
7840 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios

Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong

Abstract:

This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.

Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
7839 An Improved STBC Structure and Transmission Scheme for High Rate and Reliability in OFDMA Cooperative Communication

Authors: Hyoung-Muk Lim, Won-Jun Choi, Jae-Seon Yoon, Hyoung-Kyu Song

Abstract:

Space-time block code(STBC) has been studied to get full diversity and full rate in multiple input multiple output(MIMO) system. Achieving full rate is difficult in cooperative communications due to the each user consumes the time slots for transmitting information in cooperation phase. So combining MIMO systems with cooperative communications has been researched for full diversity and full rate. In orthogonal frequency division multiple access (OFDMA) system, it is an alternative way that each user shares their allocated subchannels instead of using the MIMO system to improve the transmission rate. In this paper, a Decode-and-forward (DF) based cooperative communication scheme is proposed. The proposed scheme has improved transmission rate and reliability in multi-path fading channel of the OFDMA up-link condition by modified STBC structure and subchannel sharing.

Keywords: cooperation, improved rate, OFDMA, STBC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
7838 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
7837 A high Speed 8 Transistor Full Adder Design Using Novel 3 Transistor XOR Gates

Authors: Shubhajit Roy Chowdhury, Aritra Banerjee, Aniruddha Roy, Hiranmay Saha

Abstract:

The paper proposes the novel design of a 3T XOR gate combining complementary CMOS with pass transistor logic. The design has been compared with earlier proposed 4T and 6T XOR gates and a significant improvement in silicon area and power-delay product has been obtained. An eight transistor full adder has been designed using the proposed three-transistor XOR gate and its performance has been investigated using 0.15um and 0.35um technologies. Compared to the earlier designed 10 transistor full adder, the proposed adder shows a significant improvement in silicon area and power delay product. The whole simulation has been carried out using HSPICE.

Keywords: XOR gate, full adder, improvement in speed, area minimization, transistor count minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6300
7836 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms

Authors: Amir Hossein Daei Sorkhabi, Bita Khazini

Abstract:

In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.

Keywords: Automatic Carwash, Dimension, PLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6792
7835 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5579
7834 Application of 0-1 Fuzzy Programming in Optimum Project Selection

Authors: S. Sadi-Nezhad, K. Khalili Damghani, N. Pilevari

Abstract:

In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.

Keywords: Fuzzy Programming, Fuzzy Knapsack, FuzzyCapital Budgeting, Fuzzy Project Selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
7833 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness

Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract:

Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.

Keywords: Equivalent stiffness, finite element model, free vibration response, Stockbridge damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
7832 An Experimental Helicopter Wind Envelope for Ship Operations

Authors: R. Bardera Mora

Abstract:

Launch and recovery helicopter wind envelope for a ship type was determined as the first step to the helicopter qualification program. Flight deck velocities data were obtained by means of a two components laser Doppler anemometer testing a 1/50th model in the wind tunnel stream. Full-scale flight deck measurements were obtained on board the ship using a sonic anemometer. Wind tunnel and full-scale measurements were compared, showing good agreement and finally, a preliminary launch and recovery helicopter wind envelope for this specific ship was built.

Keywords: Flight deck flow, relative wind, ship airwake, wind envelope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226