WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10000359,
	  title     = {Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws},
	  author    = {Jia-Jang Wu},
	  country	= {},
	  institution	= {},
	  abstract     = {This paper presents the scaling laws that provide the
criteria of geometry and dynamic similitude between the full-size
rotor-shaft system and its scale model, and can be used to predict the
torsional vibration characteristics of the full-size rotor-shaft system by
manipulating the corresponding data of its scale model. The scaling
factors, which play fundamental roles in predicting the geometry and
dynamic relationships between the full-size rotor-shaft system and its
scale model, for torsional free vibration problems between scale and
full-size rotor-shaft systems are firstly obtained from the equation of
motion of torsional free vibration. Then, the scaling factor of external
force (i.e., torque) required for the torsional forced vibration problems
is determined based on the Newton’s second law. Numerical results
show that the torsional free and forced vibration characteristics of a
full-size rotor-shaft system can be accurately predicted from those of
its scale models by using the foregoing scaling factors. For this reason,
it is believed that the presented approach will be significant for
investigating the relevant phenomenon in the scale model tests.
},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {2},
	  year      = {2015},
	  pages     = {229 - 234},
	  ee        = {https://publications.waset.org/pdf/10000359},
	  url   	= {https://publications.waset.org/vol/98},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 98, 2015},
	}