Search results for: Basalt fiber reinforced polymer
259 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete
Authors: Emine Ebru Demirci, Remzi Sahin
Abstract:
The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e. curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.
Keywords: Capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3427258 Oil Contents, Mineral Compositions, and Their Correlations in Wild and Cultivated Safflower Seeds
Authors: Rahim Ada, Mustafa Harmankaya, Sadiye Ayse Celik
Abstract:
The safflower seed contains about 25-40% solvent extract and 20-33% fiber. It is well known that dietary phospholipids lower serum cholesterol levels effectively. The nutrient composition of safflower seed changes depending on region, soil and genotypes. This research was made by using of six natural selected (A22, A29, A30, C12, E1, F4, G8, G12, J27) and three commercial (Remzibey, Dincer, Black Sun1) varieties of safflower genotypes. The research was conducted on field conditions for two years (2009 and 2010) in randomized complete block design with three replications in Konya-Turkey ecological conditions. Oil contents, mineral contents and their correlations were determined in the research. According to the results, oil content was ranged from 22.38% to 34.26%, while the minerals were in between the following values: 1469, 04-2068.07 mg kg-1 for Ca, 7.24-11.71 mg kg-1 for B, 13.29-17.41 mg kg-1 for Cu, 51.00-79.35 mg kg-1 for Fe, 3988-6638.34 mg kg-1 for K, 1418.61-2306.06 mg kg-1 for Mg, 11.37-17.76 mg kg-1 for Mn, 4172.33-7059.58 mg kg-1 for P and 32.60-59.00 mg kg-1 for Zn. Correlation analysis that was made separately for the commercial varieties and wild lines showed that high level of oil content was negatively affected by all the investigated minerals except for K and Zn in the commercial varieties.
Keywords: Safflower, oil, mineral content, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595257 Carrageenan Properties Extracted From Eucheuma cottonii, Indonesia
Authors: Sperisa Distantina, Wiratni , Moh. Fahrurrozi, Rochmadi
Abstract:
The effect of extraction solvent upon properties of carrageenan from Eucheuma cottonii was studied. The distilled water and KOH solution (concentration 0.1- 0.5N) were used as the solvent. Extraction process was carried out in water bath equipped by stirrer with constant speed of 275 rpm with a constant ratio of seaweed weight to solvent volume ( 1:50 g/mL) at 86oC for 45 minutes. The extract was then precipitated in 3 volume of 90% ethanol, oven dried at 60oC. Based on experimental data, alkali significantly influenced yield and properties of extracted carrageenan. The extracted carrageenan was found to have essentially identical FTIR spectra to the reference samples of kappa-carrageenan. Increasing the KOH concentration led to carrageenan containing less sulfate content and intrinsic viscosity. The gel strength increased along with the increasing of KOH concentration. The decreasing of intrinsic viscosity value indicates that a polymer degradation occurs during alkali extraction.Keywords: gel strength, sulfate, intrinsic viscosity, Eucheumacottonii
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6056256 Dextran/Poly(L-histidine) Graft Copolymer for pH-Responsive Drug Delivery
Authors: Dae Hwan Kang, Young-IL Jeong, Chung-Wook Chung
Abstract:
pH-sensitive drug targeting using nanoparticles for cancer chemotherapy have been spotlighted in recent decades. Graft copolymer composed of poly (L-histidine) (PHS) and dextran (DexPHS) was synthesized and pH-sensitive nanoparticles were fabricated for pH-responsive drug delivery of doxorubicin (DOX). Nanoparticles of DexPHS showed pH-sensitive changes in particle sizes and drug release behavior, i.e. particle sizes and drug release rate were increased at acidic pH, indicating that DexPHS nanoparticles have pH-sensitive drug delivery potentials. Antitumor activity of DOX-incorporated DexPHS nanoparticles were studied using CT26 colorectal carcinoma cells. Results indicated that fluorescence intensity was higher at acidic pH than basic pH. These results indicated that DexPHS nanoparticles have pH-responsive drug targeting.
Keywords: pH-sensitive polymer, nanoparticles, block copolymer, poly (L-histidine).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463255 Novel Process Formulation of Multiple Unit Tablet of Pantoprazole
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.
Keywords: Controlled release, multiple unit tablets, pantoprazole, pelletization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257254 Effect of Wheat Flour Extraction Rates on Flour Composition, Farinographic Characteristics and Sensory Perception of Sourdough Naans
Authors: Ghulam Mueen-ud-Din, Salim-ur-Rehman, Faqir M. Anjum, Haq Nawaz, Mian A. Murtaza
Abstract:
The effect of wheat flour extraction rates on flour composition, farinographic characteristics and the quality of sourdough naans was investigated. The results indicated that by increasing the extraction rate, the amount of protein, fiber, fat and ash increased, whereas moisture content decreased. Farinographic characteristic like water absorption and dough development time increased with an increase in flour extraction rate but the dough stabilities and tolerance indices were reduced with an increase in flour extraction rates. Titratable acidity for both sourdough and sourdough naans also increased along with flour extraction rate. The study showed that overall quality of sourdough naans were affected by both flour extraction rate and starter culture used. Sensory analysis of sourdough naans revealed that desirable extraction rate for sourdough naan was 76%.Keywords: Extraction rates, Farinographic characteristics, Flour composition, Sourdough naans, Wheat flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4671253 Column Size for R.C. Frames with High Drift
Authors: Sunil S. Mayengbam, S. Choudhury
Abstract:
A method to predict the column size for displacement based design of reinforced concrete frame buildings with higher target inter storey drift is reported here. The column depth derived from empirical relation as a function of given beam section, target inter-story drift, building plan features and common displacement based design parameters is used. Regarding the high drift requirement, a minimum column-beam moment capacity ratio is maintained during capacity design. The method is used in designing four, eight and twelve story frame buildings with displacement based design for three percent target inter storey drift. Non linear time history analysis of the designed buildings are performed under five artificial ground motions to show that the columns are found elastic enough to avoid column sway mechanism assuring that for the design the column size can be used with or without minor changes.
Keywords: Column size, point of contra flexure, displacement based design, capacity design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27315252 Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint
Authors: P. Saleh, G. Challita, R. Hazimeh, K. Khalil
Abstract:
In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents.
Keywords: Adhesive, Composite adherents, Impact shear, Finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334251 A Cost Optimization Model for the Construction of Bored Piles
Authors: Kenneth M. Oba
Abstract:
Adequate management, control, and optimization of cost is an essential element for a successful construction project. A multiple linear regression optimization model was formulated to address the problem of costs associated with pile construction operations. A total of 32 PVC-reinforced concrete piles with diameter of 300 mm, 5.4 m long, were studied during the construction. The soil upon which the piles were installed was mostly silty sand, and completely submerged in water at Bonny, Nigeria. The piles are friction piles installed by boring method, using a piling auger. The volumes of soil removed, the weight of reinforcement cage installed, and volumes of fresh concrete poured into the PVC void were determined. The cost of constructing each pile based on the calculated quantities was determined. A model was derived and subjected to statistical tests using Statistical Package for the Social Sciences (SPSS) software. The model turned out to be adequate, fit, and have a high predictive accuracy with an R2 value of 0.833.
Keywords: Cost optimization modelling, multiple linear models, pile construction, regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176250 Effect of Natural Animal Fillers on Polymer Rheology Behaviour
Authors: M. Seidl, J. Bobek, P. Lenfeld, L. Běhálek, A. Ausperger
Abstract:
This paper deals with the evaluation of flow properties of polymeric matrix with natural animal fillers. Technical university of Liberec cooperates on the long-term development of “green materials“ that should replace conventionally used materials (especially in automotive industry). Natural fibres (of animal and plant origin) from all over the world are collected and adapted (drying, cutting etc.) for extrusion processing. Inside the extruder these natural additives are blended with polymeric (synthetic and biodegradable - PLA) matrix and created compound is subsequently cut for pellets in the wet way. These green materials with unique recipes are then studied and their mechanical, physical and processing properties are determined. The main goal of this research is to develop new ecological materials very similar to unfilled polymers. In this article the rheological behaviour of chosen natural animal fibres is introduced considering their shape and surface that were observed with use of SEM microscopy.Keywords: Polypropylene matrix, Green polymers, Rheology, Natural animal fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192249 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments
Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa
Abstract:
Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.Keywords: Soil-Structure Interaction, RC pile, RC Tunnel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286248 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads
Authors: Anas M. Fares
Abstract:
The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.
Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656247 Comparison of Conventional and “ECO“Transportation Pavements in Cyprus using Life Cycle Approach
Authors: Constantia Achilleos, Diofantos G. Hadjimitsis
Abstract:
Road industry has challenged the prospect of ecoconstruction. Pavements may fit within the framework of sustainable development. Hence, research implements assessments of conventional pavements impacts on environment in use of life cycle approach. To meet global, and often national, targets on pollution control, newly introduced pavement designs are under study. This is the case of Cyprus demonstration, which occurred within EcoLanes project work. This alternative pavement differs on concrete layer reinforced with tire recycling product. Processing of post-consumer tires produces steel fibers improving strength capacity against cracking. Thus maintenance works are relevantly limited in comparison to flexible pavement. This enables to be more ecofriendly, referenced to current study outputs. More specific, proposed concrete pavement life cycle processes emits 15 % less air pollutants and consumes 28 % less embodied energy than those of the asphalt pavement. In addition there is also a reduction on costs by 0.06 %.
Keywords: Environmental impact assessment, life cycle, tirerecycling, transportation pavement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182246 Graft Copolymerization of Methyl Methacrylate onto Cellulose in Homogeneous Medium – Effect of Solvent and Initiator
Authors: B. Tosh, C. R. Routray
Abstract:
Homogeneous graft copolymerization of methyl methacrylate (MMA) onto cellulose was carried out in N, N – dimethyl acetamide/LiCl (DMAc/LiCl) and dimethyl sulfoxide/ paraformaldehyde (DMSO/PF) solvent system taking ceric ammonium nitrate (CAN), benzoyl peroxide (BPO) and tin (II)-2-ethyl hexanoate [Sn(Oct)2] as initiators. Different grafting parameters like graft yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions of temperature, time, and variation of the amount of monomer and initiator. The viscosity average molecular weight of grafted PMMA and number of grafts per cellulose chain were also calculated. The products were characterized by FT-IR and 1H-NMR analyses and possible reaction mechanisms were deduced. Thermal degradation of the grafted products was also studied by thermo-gravimetric analysis (TG) and differential thermo-gravimetry (DTG).
Keywords: Grafting, grafting efficiency, homogeneous medium, methyl methacrylate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184245 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A. Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
PLA emerged as a promising polymer because of its property as a compostable, biodegradable thermoplastic made from renewable sources. PLA can be polymerized from monomers (Lactide or Lactic acid) obtained by fermentation processes from renewable sources such as corn starch or sugarcane. For PLA synthesis, ring opening polymerization (ROP) of Lactide monomer is one of the preferred methods. In the literature, the technique mainly developed for ROP of PLA is based on metal/bimetallic catalyst (Sn, Zn and Al) or other organic catalysts in suitable solvent. However, the PLA synthesized using such catalysts may contain trace elements of the catalyst which may cause toxicity. This work estimated the usefulness and drawbacks of using different catalysts as well as effect of alternative energies and future aspects for PLA production.
Keywords: Alternative energy, bio-degradable, metal catalyst, poly lactic acid (PLA), ring opening polymerization (ROP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798244 Flow Properties of Commercial Infant Formula Powders
Authors: Maja Benkovic, Ingrid Bauman
Abstract:
The objective of this work was to investigate flow properties of powdered infant formula samples. Samples were purchased at a local pharmacy and differed in composition. Lactose free infant formula, gluten free infant formula and infant formulas containing dietary fibers and probiotics were tested and compared with a regular infant formula sample which did not contain any of these supplements. Particle size and bulk density were determined and their influence on flow properties was discussed. There were no significant differences in bulk densities of the samples, therefore the connection between flow properties and bulk density could not be determined. Lactose free infant formula showed flow properties different to standard supplement-free sample. Gluten free infant formula with addition of probiotic microorganisms and dietary fiber had the narrowest particle size distribution range and exhibited the best flow properties. All the other samples exhibited the same tendency of decreasing compaction coefficient with increasing flow speed, which means they all become freer flowing with higher flow speeds.Keywords: flow properties, infant formula, powderedmaterial
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3103243 Solid Concentration in Circulating Fluidized Bed Reactor for the MTO Process
Authors: Biao Wang, Tao Li, Qi-wen Sun, Wei-yong Ying, Ding-ye Fang
Abstract:
Methanol-to-olefins (MTO) coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275242 Synthesis and Analysis of Swelling and Controlled Release Behaviour of Anionic sIPN Acrylamide based Hydrogels
Authors: Atefeh Hekmat, Abolfazl Barati, Ebrahim Vasheghani Frahani, Ali Afraz
Abstract:
In modern agriculture, polymeric hydrogels are known as a component able to hold an amount of water due to their 3-dimensional network structure and their tendency to absorb water in humid environments. In addition, these hydrogels are able to controllably release the fertilisers and pesticides loaded in them. Therefore, they deliver these materials to the plants' roots and help them with growing. These hydrogels also reduce the pollution of underground water sources by preventing the active components from leaching. In this study, sIPN acrylamide based hydrogels are synthesised by using acrylamide free radical, potassium acrylate, and linear polyvinyl alcohol. Ammonium nitrate is loaded in the hydrogel as the fertiliser. The effect of various amounts of monomers and linear polymer, measured in molar ratio, on the swelling rate, equilibrium swelling, and release of ammonium nitrate is studied.Keywords: Hydrogel, controlled release, ammonium nitrate fertiliser, sIPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160241 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting
Authors: A. Karimzad Ghavidel, M. Zadshakouyan
Abstract:
Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.
Keywords: Dimensional accuracy-PMMA-CNTs-laser cutting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190240 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.
Keywords: Laser welding, metals to polymers joining, process monitoring, temperature profile, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864239 Production of (V-B) Reinforced Fe Matrix Composites
Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Simsir
Abstract:
Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.
Keywords: Hardness, Metal matrix composite (MMC), Microstructure, Powder Metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759238 Modal Analysis for Study of Minor Historical Architecture
Authors: Milorad Pavlovic, Anna Manzato, Antonella Cecchi
Abstract:
Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.
Keywords: FEM, masonry, minor historical architecture, modal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115237 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings
Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi
Abstract:
Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.
Keywords: SMC, LD-SMC, A-SMC, HGM, damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718236 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method
Authors: Balwinder Singh
Abstract:
The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.
Keywords: Reinforcement, silicon carbide, fly ash, red mud.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733235 Experimental Study on Quasi-Static Response of Multi-layer Sandwich Composite Structures
Authors: S. Jedari Salami
Abstract:
In this paper the effects of adding an extra layer within a sandwich panel and core- types in top and bottom cores on quasi- static loading are studied experimentally. The panel includes polymer composite laminated sheets for faces and the internal laminated sheet called extra layer sheet, and two types of crushable foams are selected as the core material. Quasi- static tests were done by ZWICK testing machine on fully backed specimens with two foam cores, Poly Urethane Rigid (PUR) and Poly Vinyl Chloride (PVC). It was found that the core material type has made significant role on improving the sandwich panel’s behavior compared with the effect of extra layer location.
Keywords: Multi-layer sandwich structures, Internal sheet, Crushable foam, Top core, Bottom core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192234 Influence of PLA Film Packaging on the Shelf Life of Soft Cheese Kleo
Authors: Lija Dukalska, Sandra Muizniece-Brasava, Irisa Murniece, Ilona Dabina-Bicka, Emils Kozlinskis, Svetlana Sarvi
Abstract:
Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Soft cheese Kleo produced in Latvia was packed in a biodegradable PLA without barrierproperties and VC999 BioPack lidding film PLA, coated with a barrier of pure silicon oxide (SiOx) and in combination with modified atmosphere (MAP) the influence on the shelf life was investigated and compared with some conventional (OPP, PE/PA, PE/OPA and Multibarrier 60) polymer film impact. Modified atmosphere consisted of carbon dioxide CO2 (E 290) 30% and nitrogen N2 (E 941) 70%. The analyzable samples were stored at the temperature of +4.0±0.5 °C up to 32 days- and analyzed before packaging and in the 0, 5th, 11th, 15th, 18th, 22nd, 25th, 29th and 32nd day of storage. The shelf life was extended along to 32 days, good outside appearance and lactic acid aroma was observed.Keywords: Soft cheese, modified atmosphere, conventional andbiodegradable PLA film, shelf life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689233 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel
Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid
Abstract:
This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.
Keywords: Earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126232 Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic
Authors: M. Chandrasekaran, D. Devarasiddappa
Abstract:
Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.Keywords: End milling, fuzzy logic, metal matrix composites, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170231 Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis
Authors: Holger Keitel
Abstract:
The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.
Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538230 Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges
Authors: Bugao Wang, Weifeng Wang, Xianwei Zeng
Abstract:
Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.Keywords: continuous rigid frame bridge, temperature effectanalysis, temperature field, temperature field simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578