Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis
Authors: Holger Keitel
Abstract:
The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.
Keywords: Concrete creep models, time-integration methods, sensitivity analysis, prediction uncertainty.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061763
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540References:
[1] R. Gilbert, Time Effects in Concrete Structures. Elsevier, 1988.
[2] L. Boltzmann, "Zur Theorie der elastischen Nachwirkung," Annalen der Physik und Chemie, vol. 7, pp. 624-654, 1876.
[3] J. Diener, "Beitrag zur physikalisch und geometrisch nichtlinearen Berechnung langzeitbelasteter Bauteile aus Stahlbeton und Spannbeton unter besonderer Ber¨ucksichtigung des nichtlinearen Kriechens und der Rissbildung," Dissertation, Bauhaus-Universit¨at Weimar, 1998.
[4] I. Wallmichrath, "Ein Beitrag zur wirklichkeitsnahen Berechnung schlanker Stahlbetonrahmen," Dissertation, Technische-Universit¨at Hamburg-Harburg, 2007.
[5] H. Keitel, "Bewertungsmethoden f¨ur die Prognosequalit¨at von Kriechmodellen des Betons - Evaluation Methods for Prediction Quality of Concrete Creep Models," Dissertation, Bauhaus-Universit¨at Weimar, 2011.
[6] ACI209, "Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures," American Concrete Institute, Tech. Rep., 1992.
[7] International Federation for Structural Concrete (fib), "fib Model Code 2010 - First Complete Draft - Volume 1," International Federation for Structural Concrete (fib), Tech. Rep., 2010.
[8] N. Gardner and M. Lockman, "Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete," ACI Materials Journal, vol. 98, pp. 159-167, 2001.
[9] Z. Baˇzant and S. Bajewa, "Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures - Model B3," Materials and Structures, vol. 28, pp. 357-365, 1995.
[10] Z. Baˇzant and S. Prasannan, "Solidificaton Theory for Concrete Creep. I: Formulation," Journal of Engineering Mechanics, vol. 115, pp. 1691- 1703, 1989.
[11] Z. Baˇzant and S. Prasannan, "Solidificaton Theory for Concrete Creep. II: Verification and Application," Journal of Engineering Mechanics, vol. 115 (8), pp. 1704-1725, 1989.
[12] H. Trost, "Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxationsprobleme bei Beton- und Spannbeton," Beton - und Stahlbetonbau, vol. 62, pp. 230-238 & 261-269, 1967.
[13] Z. Baˇzant, "Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method," ACI Journal, vol. 69, pp. 212-217, 1972.
[14] B. Blessensohl, "Zur numerischen Berechnung der Auswirkungen des Kriechens und Schwindens auf Betonverbundtragwerke - Grundlagen und Algorithmen f¨ur die EDV," Dissertation, Rhein-Westf¨alische Technische Hochschule Aachen, 1990.
[15] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola, Global Sensitivity Analysis. The Primer. John Wiley and Sons, 2008.
[16] T. Most, "Assessment of Structural Simulation Models by Estimating Uncertainties due to Model Selection and Model Simplification," Computers and Structures, vol. 89, pp. 1664-1672, 2011.
[17] I. M. Sobol, "Sensitivity Estimates for Nonlinear Mathematical Models," Mathematical Modeling & Computational Experiment, vol. 1, pp. 407- 414, 1993.
[18] T. Homma and A. Saltelli, "Importance Measures in Global Sensitivity Analysis of Nonlinear Models," Reliability Engineering and System Safety, vol. 52, pp. 1-17, 1996.