Search results for: Branched pipe distributor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 228

Search results for: Branched pipe distributor

228 Analytical Approach of the In-Pipe Robot on Branched Pipe Navigation and Its Solution

Authors: Yoon Koo Kang, Jung wan Park, Hyun Seok Yang

Abstract:

This paper determines most common model of in-pipe robots to derive its degree of freedom in order to compare with the necessary degree of freedom required for a system to move inside pipelines freely in order to derive analytical reason for losing control of in-pipe robots at branched pipe. DOF of most common mechanism in in-pipe robots can be calculated by considering the robot as a parallel manipulator. A new design based on previously researched in-pipe robot PAROYS has been suggested, and its possibility to overcome branched section has been simulated.

Keywords: Branched pipe, Degree of freedom, In-pipe robot, Parallel manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179
227 Solid Concentration in Circulating Fluidized Bed Reactor for the MTO Process

Authors: Biao Wang, Tao Li, Qi-wen Sun, Wei-yong Ying, Ding-ye Fang

Abstract:

Methanol-to-olefins (MTO) coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
226 Experimental Investigation on Solid Concentration in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Biao Wang, Tao Li, Qi-Wen Sun, Wei-Yong Ying, Ding-Ye Fang

Abstract:

Methanol-to-olefins coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
225 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
224 Different in Factors of the Distributor Selection for Food and Non-Food OTOP Entrepreneur in Thailand

Authors: Phutthiwat Waiyawuththanapoom

Abstract:

This study has only one objective which is to identify the different in factors of choosing the distributor for food and non-food OTOP entrepreneur in Thailand. In this research, the types of OTOP product will be divided into two groups which are food and non-food. The sample for the food type OTOP product was the processed fruit and vegetable from Nakorn Pathom province and the sample for the non-food type OTOP product was the court doll from Ang Thong province. The research was divided into 3 parts which were a study of the distribution pattern and how to choose the distributor of the food type OTOP product, a study of the distribution pattern and how to choose the distributor of the non-food type OTOP product and a comparison between 2 types of products to find the differentiation in the factor of choosing distributor. The data and information was collected by using the interview. The populations in the research were 5 producers of the processed fruit and vegetable from Nakorn Pathom province and 5 producers of the court doll from Ang Thong province. The significant factor in choosing the distributor of the food type OTOP product is the material handling efficiency and on-time delivery but for the non-food type OTOP product is focused on the channel of distribution and cost of the distributor.

Keywords: Distributor, OTOP, Food and Non-Food, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
223 Loop Heat Pipe: Simple Thermodynamic

Authors: Mohammad Hamdan, Emad Elnajjar

Abstract:

The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator.

Keywords: Loop Heat Pipe, LHP, Passive Cooling, CapillaryForce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
222 Study of the Effect of Soil Compaction and Height on Pipe Ovality for Buried Steel Pipe

Authors: Ali Ghodsbin Jahromi, Ehsan Moradi

Abstract:

In this paper, the numerical study of buried steel pipe in soil is investigated. Buried pipeline under soil weight, after embankment on the pipe leads to ovality of pipe. In this paper also it is considered the percentage of soil compaction, the soil height on the steel pipe and the external load of a mechanical excavator on the steel pipe and finally, the effect of these on the rate of pipe ovality investigated. Furthermore, the effect of the pipes’ thickness on ovality has been investigated. The results show that increasing the percentage of soil compaction has more effect on reducing percentage of ovality, and if the percentage of soil compaction increases, we can use the pipe with less thickness. Finally, ovality rate of the pipe and acceptance criteria of pipe diameter up to yield stress is investigated.

Keywords: Pipe ovality, soil compaction, finite element, pipe thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
221 Distributor Plate Design and a System for Collection of Granules in a Device with a Vortex Fluidized Bed

Authors: Bogdan Il. Bogdanov, Dimitar R.Rusev, Yancho H. Hristov, Irena G. Markovska, Dimitar P.Georgiev

Abstract:

A newly designed gas-distributor for granulation of powdery materials in equilibrated fluidized bed and a system for collecting the granules prepared are suggested. The aim of these designs is to solve the problems arising by the granulation of powdery materials in fluidized bed devices. The gasdistributor and the collection system proved to be reliable at operation; they reduce the size of still zones, effectively disperse the binding solution in the bed and ensure the collection of granules of given diameter

Keywords: Distributor plate design, granulation, system design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
220 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

Authors: T. Davitashvili, G. Gubelidze

Abstract:

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
219 Development of Thermal Model by Performance Verification of Heat Pipe Subsystem for Electronic Cooling under Space Environment

Authors: MK Lee, JS Hong, SM Sin, HU Oh

Abstract:

Heat pipes are used to control the thermal problem for electronic cooling. It is especially difficult to dissipate heat to a heat sink in an environment in space compared to earth. For solving this problem, in this study, the Poiseuille (Po) number, which is the main measure of the performance of a heat pipe, is studied by CFD; then, the heat pipe performance is verified with experimental results. A heat pipe is then fabricated for a spatial environment, and an in-house code is developed. Further, a heat pipe subsystem, which consists of a heat pipe, MLI (Multi Layer Insulator), SSM (Second Surface Mirror), and radiator, is tested and correlated with the TMM (Thermal Mathematical Model) through a commercial code. The correlation results satisfy the 3K requirement, and the generated thermal model is verified for application to a spatial environment.

Keywords: CFD, Heat pipe, Radiator, Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
218 Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe

Authors: H. Mat Kiah, Rafiziana M. Kasmani, Norazana Ibrahim, Roshafima R. Ali, Aziatul N.Sadikin

Abstract:

An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1m and thus, the pipe was lengthened 1m (based on the centreline length of the segment). Ignition was affected at one end of the vessel while the other end was closed. Only stoichiometric concentration (ะค, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum overpressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed, of 63ms-1, was observed in a gas explosion with bent pipe; greater by a factor of ~3 as compared with straight pipe (23ms-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate, which increases the flame speed.

Keywords: Bending, gas explosion, bending, flame acceleration, overpressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
217 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty  normally used the four-wire probe according to the JIS B 0262.  Besides, according to the EA-10/10 standard, the pipe thread could be  measured using the three-wire probe. This research proposed to use  the three-wire probe measuring the pitch diameter of the pipe taper  thread. The measuring accessory component was designed and made,  then, assembled to one side of the ULM 828 CiM machine.  Therefore, this machine could be used to measure and calibrate both  the pipe thread and the pipe taper thread. The equations and the  expanded uncertainty for pitch diameter measurement were  formulated. After the experiment, the results showed that the pipe  taper thread had the pitch diameter equal to 19.165mm and the  expanded uncertainty equal to 1.88µm. Then, the experiment results  were compared to the results from the National Institute of Metrology  Thailand. The equivalence ratio from the comparison showed that  both results were related. Thus, the proposed method of using the  three-wire probe measured the pitch diameter of the pipe taper thread  was acceptable.

Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7056
216 Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD

Authors: Eleni Ioannou, Pascal Nucara, Keith Pullen

Abstract:

The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an ”oval” type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept.

Keywords: CFD, centrifugal compressor, micro-gas turbine, pipe diffuser, SLM, wedge diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
215 Design Process of the Fixing Pipes in the Guide Pipe Anchor System for Cable-Stayed Bridges

Authors: Jinwoong Choi, Sun-Kyu Park, Sungnam Hong

Abstract:

For the efficient and safe use of the cable-stayed bridge, a design based on the detailed local analysis of the cable anchor system is required. Also, a theoretical design process for the anchor system should be prepared and reviewed. Generally, the size of the fixing pipe in the anchor system is decided according to the specifications prepared by cable-manufacturing companies, and accordingly, there is difficulty determining the initial inner diameters of the fixing pipes. As such, there is no choice but to use the products with the existing sizes. In this study, the existing design process of the fixing pipe, is a type of guide pipe anchor in the cable anchor system, is reviewed, a formula determining the thickness of the fixing pipe is proposed, and the convenience and validity of the suggested equation is compared with the results of the existing designs to verify its convenience and validity.

Keywords: Cable-stayed bridge; Guide pipe anchor system; Fixing pipe; Theoretical design process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
214 Optimization of a Four-Lobed Swirl Pipe for Clean-In-Place Procedures

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu

Abstract:

This paper presents a numerical investigation of two horizontally mounted four-lobed swirl pipes in terms of swirl induction effectiveness into flows passing through them. The swirl flows induced by the two swirl pipes have the potential to improve the efficiency of Clean-In-Place procedures in a closed processing system by local intensification of hydrodynamic impact on the internal pipe surface. Pressure losses, swirl development within the two swirl pipe, swirl induction effectiveness, swirl decay and wall shear stress variation downstream of two swirl pipes are analyzed and compared. It was found that a shorter length of swirl inducing pipe used in joint with transition pipes is more effective in swirl induction than when a longer one is used, in that it has a less constraint to the induced swirl and results in slightly higher swirl intensity just downstream of it with the expense of a smaller pressure loss. The wall shear stress downstream of the shorter swirl pipe is also slightly larger than that downstream of the longer swirl pipe due to the slightly higher swirl intensity induced by the shorter swirl pipe. The advantage of the shorter swirl pipe in terms of swirl induction is more significant in flows with a larger Reynolds Number.

Keywords: Swirl pipe, swirl effectiveness, CFD, wall shear stress, swirl intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
213 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
212 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance

Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani

Abstract:

This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.

Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44814
211 Numerical and Experimental Study of Flow from a Leaking Buried Pipe in an Unsaturated Porous Media

Authors: S.M.Hosseinalipour, H.Aghakhani

Abstract:

Considering the numerous applications of the study of the flow due to leakage in a buried pipe in unsaturated porous media, finding a proper model to explain the influence of the effective factors is of great importance.There are various important factors involved in this type of flow such as: pipe leakage size and location, burial depth, the degree of the saturation of the surrounding porous medium, characteristics of the porous medium, fluid type and pressure of the upstream.In this study, the flow through unsaturated porous media due to leakage of a buried pipe for up and down leakage location is studied experimentally and numerically and their results are compared. Study results show that Darcy equation together with BCM method (for calculating the relative permeability) have suitable ability for predicting the flow due to leakage of buried pipes in unsaturated porous media.

Keywords: Buried, Leaking pipe, Porous media, Unsaturated

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
210 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: Heat pipe, inclination, optimization, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
209 Numerical Simulation of a Conventional Heat Pipe

Authors: Shoeib Mahjoub, Ali Mahtabroshan

Abstract:

The steady incompressible flow has been solved in cylindrical coordinates in both vapour region and wick structure. The governing equations in vapour region are continuity, Navier-Stokes and energy equations. These equations have been solved using SIMPLE algorithm. For study of parameters variation on heat pipe operation, a benchmark has been chosen and the effect of changing one parameter has been analyzed when the others have been fixed.

Keywords: Vapour region, conventional heat pipe, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4118
208 Performance Analysis of Heat Pipe Using Copper Nanofluid with Aqueous Solution of n-Butanol

Authors: Senthilkumar R, Vaidyanathan S, Sivaraman B

Abstract:

This study presents the improvement of thermal performance of heat pipe using copper nanofluid with aqueous solution of n-Butanol. The nanofluids kept in the suspension of conventional fluids have the potential of superior heat transfer capability than the conventional fluids due to their improved thermal conductivity. In this work, the copper nanofluid which has a 40 nm size with a concentration of 100 mg/lit is kept in the suspension of the de-ionized (DI) water and an aqueous solution of n-Butanol and these fluids are used as a working medium in the heat pipe. The study discusses about the effect of heat pipe inclination, type of working fluid and heat input on the thermal efficiency and thermal resistance. The experimental results are evaluated in terms of its performance metrics and are compared with that of DI water.

Keywords: copper nanofluid with aqueous solution of n-Butanol, heat pipe, thermal efficiency, thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3366
207 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3805
206 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and widely used for a long time; however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area. In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented. This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: Cold forging, FEA, finite element analysis, Forge- 3D, rotating forming, tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
205 CFD Simulation of the Hydrodynamic Vibrator for Stuck - Pipe Liquidation

Authors: L. Grinis, V. Haslavsky

Abstract:

Stuck-pipe in drilling operations is one of the most pressing and expensive problems in the oil industry. This paper describes a computational simulation and an experimental study of the hydrodynamic vibrator, which may be used for liquidation of stuck-pipe problems during well drilling. The work principle of the vibrator is based upon the known phenomena of Vortex Street of Karman and the resulting generation of vibrations. We will discuss the computational simulation and experimental investigations of vibrations in this device. The frequency of the vibration parameters has been measured as a function of the wide range Reynolds Number. The validity of the computational simulation and of the assumptions on which it is based has been proved experimentally. The computational simulation of the vibrator work and its effectiveness was carried out using FLUENT software. The research showed high degree of congruence with the results of the laboratory tests and allowed to determine the effect of the granular material features upon the pipe vibration in the well. This study demonstrates the potential of using the hydrodynamic vibrator in a well drilling system.

Keywords: Drilling, stuck-pipe, vibration, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
204 A Review of Heat Pipe Heat Exchangers Activity in Asia

Authors: Ehsan Firouzfar, Maryam Attaran

Abstract:

Heat pipes are two-phase heat transfer devices with high effective thermal conductivity. Due to the high heat transport capacity, heat exchanger with heat pipes has become much smaller than traditional heat exchangers in handling high heat fluxes. With the working fluid in a heat pipe, heat can be absorbed on the evaporator region and transported to the condenser region where the vapour condenses releasing the heat to the cooling media. Heat pipe technology has found increasing applications in enhancing the thermal performance of heat exchangers in microelectranics, energy saving in HVAC systems for operating rooms,surgery centers, hotels, cleanrooms etc, temperature regulation systems for the human body and other industrial sectors. Development activity in heat pipe and thermosyphon technology in asia in recent years is surveyed. Some new results obtained in Australia and other countries are also included.

Keywords: Heat pipe heat exchanger, Thermosyphone, effectiveness, HVAC system, energy saving, temperature regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3572
203 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-ping, Zhu Jian-xun, Liu Sheng-nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion; time domain, allocation of thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731
202 Numerical Analysis of the Effect of Geocell Reinforcement above Buried Pipes on Surface Settlement and Vertical Pressure

Authors: Waqed H. Almohammed, Mohammed Y. Fattah, Sajjad E. Rasheed

Abstract:

Dynamic traffic loads cause deformation of underground pipes, resulting in vehicle discomfort. This makes it necessary to reinforce the layers of soil above underground pipes. In this study, the subbase layer was reinforced. Finite element software (PLAXIS 3D) was used to in the simulation, which includes geocell reinforcement, vehicle loading, soil layers and Glass Fiber Reinforced Plastic (GRP) pipe. Geocell reinforcement was modeled using a geogrid element, which was defined as a slender structure element that has the ability to withstand axial stresses but not to resist bending. Geogrids cannot withstand compression but they can withstand tensile forces. Comparisons have been made between the numerical models and experimental works, and a good agreement was obtained. Using the mathematical model, the performance of three different pipes of diameter 600 mm, 800 mm, and 1000 mm, and three different vehicular speeds of 20 km/h, 40 km/h, and 60 km/h, was examined to determine their impact on surface settlement and vertical pressure at the pipe crown for two cases: with and without geocell reinforcement. The results showed that, for a pipe diameter of 600 mm under geocell reinforcement, surface settlement decreases by 94 % when the speed of the vehicle is 20 km/h and by 98% when the speed of the vehicle is 60 km/h. Vertical pressure decreases by 81 % when the diameter of the pipe is 600 mm, while the value decreases to 58 % for a pipe with diameter 1000 mm. The results show that geocell reinforcement causes a significant and positive reduction in surface settlement and vertical stress above the pipe crown, leading to an increase in pipe safety.

Keywords: Dynamic loading, geocell reinforcement, GRP pipe, PLAXIS 3D, surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
201 A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe

Authors: Chih-Chieh Chen, Chih-Hao Chen, Guan-Wei Wu, Sih-Li Chen

Abstract:

A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.

Keywords: PET, heat pipe, thermal resistance, effective thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2930
200 Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

Authors: H. Hazar, S. Sap

Abstract:

In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating the internal and external parts of the exhaust pipe was reduced and its effects on harmful exhaust emissions were investigated. As a result of the experiments; a remarkable improvement was determined in emission values as a result of delay in cooling of exhaust gases due to the coating.

Keywords: Chrome carbide, diesel engine, exhaust emission, thermal barrier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
199 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm

Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura

Abstract:

In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.

Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739