Search results for: Silicon photonic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 230

Search results for: Silicon photonic

230 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating

Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo

Abstract:

In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.

Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
229 CMOS-Compatible Deposited Materials for Photonic Layers Integrated above Electronic Integrated Circuit

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics has generated an increasing interest in recent years mainly for optical communications optical interconnects in microelectronic circuits or bio-sensing applications. The development of elementary passive and active components (including detectors and modulators), which are mainly fabricated on the silicon on insulator platform for CMOS-compatible fabrication, has reached such a performance level that the integration challenge of silicon photonics with microelectronic circuits should be addressed. Since crystalline silicon can only be grown from another silicon crystal, making it impossible to deposit in this state, the optical devices are typically limited to a single layer. An alternative approach is to integrate a photonic layer above the CMOS chip using back-end CMOS fabrication process. In this paper, various materials, including silicon nitride, amorphous silicon, and polycrystalline silicon, for this purpose are addressed.

Keywords: Silicon photonics, CMOS, Integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
228 CMOS-Compatible Silicon Nanoplasmonics for On-Chip Integration

Authors: Shiyang Zhu, Guo-Qiang Lo, Dim-Lee Kwong

Abstract:

Although silicon photonic devices provide a significantly larger bandwidth and dissipate a substantially less power than the electronic devices, they suffer from a large size due to the fundamental diffraction limit and the weak optical response of Si. A potential solution is to exploit Si plasmonics, which may not only miniaturize the photonic device far beyond the diffraction limit, but also enhance the optical response in Si due to the electromagnetic field confinement. In this paper, we discuss and summarize the recently developed metal-insulator-Si-insulator-metal nanoplasmonic waveguide as well as various passive and active plasmonic components based on this waveguide, including coupler, bend, power splitter, ring resonator, MZI, modulator, detector, etc. All these plasmonic components are CMOS compatible and could be integrated with electronic and conventional dielectric photonic devices on the same SOI chip. More potential plasmonic devices as well as plasmonic nanocircuits with complex functionalities are also addressed.

Keywords: Silicon nanoplasmonics, Silicon nanophotonics, Onchip integration, CMOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
227 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.

Keywords: Plasmonics, on-chip integration, Silicon photonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
226 Dextran Modified Silicon Photonic Microring Resonator Sensors

Authors: Jessie Yiying Quah, Vivian Netto, Jack Sheng Kee, Eric Mouchel La Fosse, Mi Kyoung Park

Abstract:

We present a dextran modified silicon microring resonator sensor for high density antibody immobilization. An array of sensors consisting of three sensor rings and a reference ring was fabricated and its surface sensitivity and the limit of detection were obtained using polyelectrolyte multilayers. The mass sensitivity and the limit of detection of the fabricated sensor ring are 0.35 nm/ng mm-2 and 42.8 pg/mm2 in air, respectively. Dextran modified sensor surface was successfully prepared by covalent grafting of oxidized dextran on 3-aminopropyltriethoxysilane (APTES) modified silicon sensor surface. The antibody immobilization on hydrogel dextran matrix improves 40% compared to traditional antibody immobilization method via APTES and glutaraldehyde linkage.

Keywords: Antibody immobilization, Dextran, Immunosensor, Label-free detection, Silicon micro-ring resonator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
225 Electrotechnology for Silicon Refining: Plasma Generator and Arc Furnace: Installations and Theoretical Base

Authors: Ashot Navasardian, Mariam Vardanian, Vladik Vardanian

Abstract:

The photovoltaic and the semiconductor industries are in growth and it is necessary to supply a large amount of silicon to maintain this growth. Since silicon is still the best material for the manufacturing of solar cells and semiconductor components so the pure silicon like solar grade and semiconductor grade materials are demanded. There are two main routes for silicon production: metallurgical and chemical. In this article, we reviewed the electrotecnological installations and systems for semiconductor manufacturing. The main task is to design the installation which can produce SOG Silicon from river sand by one work unit.

Keywords: Metallurgical grade silicon, solar grade silicon, impurity, refining, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
224 A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal

Authors: S. Sadegzadeh, A. Mousavi

Abstract:

Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa2Ca2Cu3O10 as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF2 as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF2)NInSb(Si/MgF2)N named S.I, and (Si/MgF2)NHgBa2Ca2Cu3O10(Si/MgF2)N named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types.

Keywords: Defect modes, photonic crystals, semiconductor, superconductor, transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
223 Increasing Directional Intensity of Output Light Beam from Photonic Crystal Slab Outlet Including Micro Cavity Resonators

Authors: A. Mobini, K. Saghafi, V. Ahmadi

Abstract:

in this paper we modified a simple two-dimensional photonic crystal waveguide by creating micro cavity resonators in order to increase the output light emission which can be applicable to photonic integrated circuits. The micro cavity resonators are constructed by removing two tubes close to the waveguide output. Coupling emitted light from waveguide with those micro cavities, results increasing intensity of waveguide output light. Inserting a tube in last row of waveguide, we have improved directionality of output light beam.

Keywords: photonic crystal, waveguide, micro cavity resonators, directional emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
222 Effect of Concentration of Sodium Borohydrate on the Synthesis of Silicon Nanoparticles via Microemulsion Route

Authors: W. L. Liong, Srimala Sreekantan, Sabar D. Hutagalung

Abstract:

The effect of concentration of reduction agent of sodium borohydrate (NaBH4) on the properties of silicon nanoparticles synthesized via microemulsion route is reported. In this work, the concentration of the silicon tetrachloride (SiCl4) that served as silicon source with sodium hydroxide (NaOH) and polyethylene glycol (PEG) as stabilizer and surfactant, respectively, are keep fixed. Four samples with varied concentration of NaBH4 from 0.05 M to 0.20 M were synthesized. It was found that the lowest concentration of NaBH4 gave better formation of silicon nanoparticles.

Keywords: Microelmusion, nanoparticles, reduction, silicon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
221 Improved Plasmonic Demultiplexer Based on Tapered and Rectangular Slot MIM Waveguide

Authors: Aso Rahimzadegan, Seyyed Poorya Hosseini, Kamran Qaderi

Abstract:

In this paper, we have proposed two novel plasmonic demultiplexing structures based on metal-insulator-metal surfaces which, beside their compact size, have a very good transmission spectrum. The impact of the key internal parameters on the transmission spectrum is numerically analyzed by using the twodimensional (2D) finite difference time domain (FDTD) method. The proposed structures could be used to develop ultra-compact photonic wavelength demultiplexing devices for large-scale photonic integration.

Keywords: Photonic integrated devices, Plasmonics, Metalinsulator- metal (MIM) waveguide, Demultiplexers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
220 Tunable Photonic Microwave Bandpass Filter Based on EOPM and VPBS

Authors: R. Heydari, M. R. Salehi

Abstract:

A tunable photonic microwave bandpass filter with negative coefficient based on an electro-optic phase modulator (EOPM) and a variable polarization beamsplitter (VPBS) is demonstrated. A two-tap microwave bandpass filter with one negative coefficient is presented. The chromatic dispersion and optical coherence are not affected on this filter.

Keywords: Bandpass filter, EOPM, photonic microwave filter, polarization beamsplitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
219 Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method

Authors: Athanasios Theoharidis, Thomas Kamalakis, Ioannis Neokosmidis, Thomas Sphicopoulos

Abstract:

In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.

Keywords: Optical Communications, Integrated Optics, Photonic Crystals, Optical Waveguide Discontinuities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
218 Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network

Authors: Jyothi Digge, B. U. Rindhe, S. K. Narayankhedkar

Abstract:

A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.

Keywords: Dispersion, MMI Coupler, Photonic Bandgap, Power Splitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
217 Low Nonlinear Effects Index-Guiding Nanostructured Photonic Crystal Fiber

Authors: S. Olyaee, M. Seifouri, A. Nikoosohbat, M. Shams Esfand Abadi

Abstract:

Photonic Crystal Fibers (PCFs) can be used in optical communications as transmission lines. For this reason, the PCFs with low confinement loss, low chromatic dispersion, and low nonlinear effects are highly suitable transmission media. In this paper, we introduce a new design of index-guiding nanostructured photonic crystal fiber (IG-NPCF) with ultra-low chromatic dispersion, low nonlinearity effects, and low confinement loss. Relatively low dispersion is achieved in the wavelength range of 1200 to 1600nm using the proposed design. According to the new structure of nanostructured PCF presented in this study, the chromatic dispersion slope is -30(ps/km.nm) and the confinement loss reaches below 10-7 dB/km. While in the wavelength range mentioned above at the same time an effective area of more than 50.2μm2 is obtained.

Keywords: Optical communication systems, nanostructured, index-guiding, dispersion, confinement loss, photonic crystal fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
216 Study of Photonic Crystal Band Gap and Hexagonal Microcavity Based on Elliptical Shaped Holes

Authors: A. Benmerkhi, A. Bounouioua, M. Bouchemat, T. Bouchemat

Abstract:

In this paper, we present a numerical optical properties of a triangular periodic lattice of elliptical air holes. We report the influence of the ratio (semi-major axis length of elliptical hole to the filling ratio) on the photonic band gap. Then by using the finite difference time domain (FDTD) algorithm, the resonant wavelength of the point defect microcavities in a two-dimensional photonic crystal (PC) shifts towards the low wavelengths with significantly increased filing ratio. It can be noted that the Q factor is gradually changed to higher when the filling ratio increases. It is due to an increase in reflectivity of the PC mirror. Also we theoretically investigate the H1 cavity, where the value of semi-major axis (Rx) of the six holes surrounding the cavity are fixed at 0.5a and the Rx of the two edge air holes are fixed at the optimum value of 0.52a. The highest Q factor of 4.1359 × 106 is achieved at the resonant mode located at λ = 1.4970 µm.

Keywords: Photonic crystal, microcavity, filling ratio, elliptical holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
215 Optical Induction of 2D and 3D Photonic Lattices in Photorefractive Materials based on Talbot effect

Authors: A. Badalyan, R. Hovsepyan, V. Mekhitaryan, P. Mantashyan, R. Drampyan

Abstract:

In this paper we report the technique of optical induction of 2 and 3-dimensional (2D and 3D) photonic lattices in photorefractive materials based on diffraction grating self replication -Talbot effect. 1D and 2D different rotational symmery diffraction masks with the periods of few tens micrometers and 532 nm cw laser beam were used in the experiments to form an intensity modulated light beam profile. A few hundred micrometric scale replications of mask generated intensity structures along the beam propagation axis were observed. Up to 20 high contrast replications were detected for 1D annular mask with 30

Keywords: Diffraction gratings, laser, photonic lattice, Talbot effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
214 Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry

Authors: T. Kamalakis, I. Neokosmidis, D. Varoutas, T. Sphicopoulos

Abstract:

The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.

Keywords: Roadmapping, Photonic Components, Forecasting, Diffusion Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
213 The Synergistic Effects of Using Silicon and Selenium on Fruiting of Zaghloul Date Palm (Phoenix dectylifera L.)

Authors: M. R. Gad El- Kareem, A. M. K. Abdel Aal, A. Y. Mohamed

Abstract:

During 2011 and 2012 seasons, Zaghloul date palms received four sprays of silicon (Si) at 0.05 to 0.1% and selenium (Se) at 0.01 to 0.02%. Growth, nutritional status, yield as well as physical and chemical characteristics of the fruits in response to application of silicon and selenium were investigated. Single and combined applications of silicon at 0.05 to 0.1% and selenium at 0.01 to 0.02% was very effective in enhancing the leaf area, total chlorophylls, percentages of N, P and K in the leaves, yield, bunch weight as well as physical and chemical characteristics of the fruits in relative to the check treatment. Silicon was superior to selenium in this respect. Combined application was favorable than using each alone in this connection. Treating Zaghloul date palms four times with a mixture of silicon at 0.05% + selenium at 0.01% resulted in an economical yield and producing better fruit quality.

Keywords: Date Palms, Zaghloul, Silicon, Selenium, leaf area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
212 A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue- Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
211 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors

Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari

Abstract:

The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.

Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
210 Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices

Authors: Vijay Janyani, Neetu Joshi, Jigyasa Pagaria, Parul Pathak

Abstract:

Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.

Keywords: Band gap engineering, Nonlinear switching, Photonic crystals, PhC tapers, waveguides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
209 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
208 Investigation of Mesoporous Silicon Carbonization Process

Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev

Abstract:

In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: Silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
207 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: Induction, amorphous silica, carbon microstructure, silicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
206 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method

Authors: F. Karim

Abstract:

In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.

Keywords: Triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
205 Thermoelectric Properties of Doped Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltzmann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.

Keywords: Conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233
204 An Electrically Modulatable Silicon Waveguide Grating Using an Implantation Technology

Authors: Qing Fang, Lianxi Jia, JunFeng Song, Xiaoguang Tu, Mingbin Yu, Andy Eu-jin Lim, Guo Qiang Lo

Abstract:

The first pn-type carrier-induced silicon Bragg-grating filter is demonstrated. The extinction-ratio modulations are 11.5 dB and 10 dB with reverse and forward biases, respectively. 8-Gpbs data rate is achieved with a reverse bias.

Keywords: Silicon photonics, Waveguide grating, Carrier-induced, Extinction-ratio modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
203 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators

Authors: Isao Tomita

Abstract:

The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.

Keywords: All-silicon raman laser, FTTH, GE-PON, quasi-phase-matched structure, resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
202 Analysis of a Novel Strained Silicon RF LDMOS

Authors: V.Fathipour, M. A. Malakootian, S. Fathipour, M. Fathipour

Abstract:

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Keywords: High Frequency MOSFET, Design of RF LDMOS, Strained-Silicon, LDMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
201 Three Dimensional MEMS Supercapacitor Fabricated by DRIE on Silicon Substrate

Authors: Wei Sun, Ruilin Zheng, Xuyuan Chen

Abstract:

Micro power sources are required to be used in autonomous microelectromechanical system (MEMS). In this paper,  we designed and fabricated a three dimensional (3D) MEMS supercapacitor, which is consisting of conformal silicon  dioxide/titanium/polypyrrole (PPy) layers on silicon substrate. At first, ''through-structure'' was fabricated on the silicon substrate by high-aspect-ratio deep reactive ion etching (DRIE) method, which enlarges the available surface area significantly. Then the SiO2/Ti/PPy layers grew sequentially on the ³through-structure´. Finally, the supercapacitor was investigated by electrochemical methods.

Keywords: MEMS, Supercapacitor, DRIE, 3D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263