A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A High Quality Factor Filter Based on Quasi-Periodic Photonic Structure

Authors: Hamed Alipour-Banaei, Farhad Mehdizadeh

Abstract:

We report the design and characterization of ultra high quality factor filter based on one-dimensional photonic-crystal Thue- Morse sequence structure. The behavior of aperiodic array of photonic crystal structure is numerically investigated and we show that by changing the angle of incident wave, desired wavelengths could be tuned and a tunable filter is realized. Also it is shown that high quality factor filter be achieved in the telecommunication window around 1550 nm, with a device based on Thue-Morse structure. Simulation results show that the proposed structure has a quality factor more than 100000 and it is suitable for DWDM communication applications.

Keywords: Thue-Morse, filter, quality factor.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109013

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024

References:


[1] Madsen C. K., Zhao J. H., Optical filter design and analysis: a signal processing approach. Wiley, New York, (1999).
[2] Rostami A., Generalized Fibonacci quasi photonic crystals and generation of superimposed Bragg Gratings for optical communication. Microelectronics Journal 37 897–903 (2006).
[3] Kurosaki H., Koshiishi H., Suzuki T., Tsuchiya K., Development of tunable imaging spectro-polarimeter for remote sensing. Adv. Space Res 32 11 2141–2146 (2003).
[4] Chaudhari A. J., Darvas F., Bading J. R., Moats R. A., Conti P. S., Smith D. J., Cherry S. R., Leahy R. M., Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Phys. Med. Biol. 50 23, 5421–5441 (2005).
[5] Woltman S. J., Jay G. D., Crawford G. P., Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6 929–938 (2007).
[6] Gat N., Imaging spectroscopy using tunable filters: a review. Proc. SPIE 4056, 50–64 (2000).
[7] Sakoda K, Optical Properties of Photonic Crystals. Springer-Verlag, Berlin, (2001).
[8] Mehdizadeh F., Alipour-Banaei H., Daie-Kuzekanani Z., All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems. Optoelectronics and Advanced Materials-Rapid Communications 6 5-6 527-531 (2012).
[9] Qiao F., Zhang C., Wan J., Zi J., Photonic quantum-well structures: multiple channeled filtering phenomena. Appl. Phys. Lett. 77 23, 3698– 3701 (2000).
[10] Lin W. H., Wu C. J., Yang T. J., and Chang, S. J., Terahertz multi channeled filter in a superconducting photonic crystal. Optics Express, 18 27155-27166 (2010).
[11] Lin M. and Xu J. Narrow pass-band and narrow transmission-angle filter by photonic heterostructures containing negative index materials. IEEE ICMMT Proceedings 1662-1664 (2010).
[12] Alipour-Banaei H., Mehdizadeh F., a proposal for anti-uvb filter based on one-dimensional photonic crystal structure. Digest Journal of Nanomaterials and Biostructures 7 367-371 (2012).
[13] Schechtman D., Blech I., Gratias D., Cahn J. W., Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 53 1951 (1984).
[14] Kohmoto M., Sutherland B., Iguchi K., Localization of optics: Quasiperiodic media. Phys. Rev. Lett. 58 2436 (1987).
[15] Huang X., Liu Y., Mo D., Transmission of light through a class of quasiperiodic multilayers. Solid State Commun. 87 601 (1993)
[16] Zirak-Gharamaleki S., Narrowband optical filter design for DWDM communication applications based onGeneralized Aperiodic Thue– Morse structures. Optics Communications 284 579–584 (2011)
[17] W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, Features of the perfect transmission in Thue–Morse dielectric multilayers. JOSA B, 28, 11 2584-2591 (2011)
[18] N. Liu, Propagation of light waves in Thue-Morse dielectric multilayers. Phys. Rev. B 55, 3543–3547 (1997)
[19] Vasconcelos M. S. and Albuquerque E. L. Transmission fingerprints in quasiperiodic dielectric multilayers. Phys. Rev. B 59 11128-11131 (1999).
[20] Dal Negro L., Stolfi M., Yi Y., Michel J., Duan X., Kimerling L. C., LeBlanc J., Haavisto J., Photon band gap properties and omnidirectional reflectance in Si/SiO2Thue–Morse quasicrystals. Appl. Phys. Lett. 84, 5186 (2004).
[21] Jiang X., Zhang Y., Feng S., Huang K. C., Yi Y. and Joannopoulos J. D., Photonic band gaps and localization in the Thue–Morse structures. Appl. Phys. Lett. 86, 201110 (2005).
[22] Dal Negro L., Yi J. H., Nguyen V., Yi Y., Michel J., Kimerling L. C., Spectrally enhanced light emission from aperiodic photonic structures. Appl. Phys. Lett. 86, 261905 (2005).
[23] Agarwal V., Soto-Urueta J. A., Becerra D., and Miguel E. Mora-Ramos, Light propagation in polytypeThue–Morse structures made of porous silicon. Photonics and Nanostructures - Fundamentals and Applications 3 155-161 (2005).
[24] Zhang G., Yang X., Li Y., Song H., Optical transmission through multicomponent generalized Thue–Morse superlattices. Physica B: Condensed Matter 405 3605-3610 (2010).
[25] Grigoriev V. V., Biancalana F., Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue–Morse sequence. Photonics and Nanostructures – Fundamentals and Applications 8 285– 290 (2010).
[26] Deng X. H., Yuan J. R., Hong W. Q., Ouyang H.Tunable filters based on Thue-Morse quasicrystals composed of single-negative materials. Physics Procedia 22 360 – 365 (2011).
[27] Quyang H., Deng X. H., Driection independent band gaps extension based on Thue-Morse photonic heterostructures containing negative index materials. Materials Science Forum 1077 675-677 (2011).
[28] Yeh P, Optical Waves in Layered Media Wiley New York Chap. 6 (1998).