A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal

Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen

Abstract:

In this study, we demonstrate a high-resolution refractive index sensor based on a Magnetic Photonic Crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of  Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.

Keywords: Magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109095

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528

References:


[1] J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application”, Opt. Exp. 2012, 20, 7954-7965.
[2] C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area”, Opt. Exp. 2010, 18, 27931-27937.
[3] S. Kita, K. Nozaki, T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration”, Opt. Exp. 2008, 16, 8175-8180.
[4] U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures”, Opt. Lett. 2008, 33, 2206-2208.
[5] M. R. Lee, P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection”, Opt. Exp. 2007, 15, 4530-4535.
[6] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Opt. Lett. 2004, 29, 1093-1095.
[7] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulous, “High transmission through sharp bends in photonic crystal waveguides”, Phys. Rev. Lett. 1996, 77, 3787-3790.
[8] P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency”, Phys. Rev. B 1996, 54, 7837-7842.
[9] Y. Akanhane, T. Asano, B. S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 2003, 425, 944-947.
[10] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
[11] O. Painter, J. Vučkovič, A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab”, J. Opt. Soc. Am. B 1999, 16, 275-285.
[12] H. Kato, T. Matsushita, A. Takayama, M. Egawa, “Theoretical analysis of optical and magneto-optical properties of one-dimensional magnetophotonic crystals”, J. Appl. Phys. 2003, 93, 3906-3911.
[13] S. N. Kurilkina, M. V. Shuba, “Propagation and transformation of the light waves in magnetoactive periodic structures”, Opt. Spectrosc. 2002, 93, 918-923.
[14] A. G. Zhdanov, A. A. Fedyanin, O. A. Aktsipetrov, D. Kobayashi, H. Uchida, M. Inoue, “Enhancement of Faraday rotation at photonic-band-gap edge in garnet-based magnetophotonic crystals”, J. Magn. Magn. Mater. 2006, 300, e253-e256.
[15] P. A. Belov, S. A. Tretyakov, A. J. Viitanen, “Nonreciprocal microwave band-gap structures”, Phys. Rev. E 2002, 66, 016608.
[16] A. Figotin, I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals”, Phys. Rev. B 2003, 67, 165210.
[17] W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field”, Opt. Lett. 2010, 35, 568-570.
[18] Z. Wang, L. Shen, Z. Yu, X. Zhang, X. Zheng, “Highly efficient photonic-crystal splitters based on one-way waveguiding”, J. Opt. Soc. Am. B 2013, 30, 173-176.
[19] I. H. H. Zabel, D. Stroud, “Photonic band structures of optically anisotropic periodic arrays”, Phys. Rev. B 1993, 48, 5004-5012.
[20] A. Soltani Vala, B. Rezaei, M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields”, Physica B 2010, 405, 2996-2998.
[21] H. Wang, Y. Luo, Y. T. Wang, H. B. Zhang, Y. T. Fang, “Splitting of defect-mode in one-dimensional magnetic photonic crystal”, Physica B 2011, 406, 2977-2981.
[22] D. Jalas, A. Petrov, M. Krause, J. Hampe, M. Eich, “Resonance splitting in gyrotropic ring resonators”, Opt. Lett. 2010, 35, 3438-3440.
[23] K. Sakoda, Optical Properties of Photonic Crystals, Springer, 2001.
[24] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices”, IEEE Trans. Antennas Propagat. 1996, 44, 1630-1639.
[25] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, Wiley-Interscience, 2007.