Search results for: laser induced incandescence
2077 Regulation of Apoptosis in Human Lung Cancer NCI-H226 Cells through Caspase – Dependent Mechanism by Benjakul Extract
Authors: Pintusorn Hansakul, Ruchilak Rattarom, Arunporn Itharat
Abstract:
Background: Benjakul, a Thai traditional herbal formulation, comprises of five plants: Piper chaba, Piper sarmentosum, Piper interruptum, Plumbago indica, and Zingiber officinale. It has been widely used to treat cancer patients in the context of folk medicine in Thailand. This study aimed to investigate the cytotoxic effect of the ethanol extract of Benjakul against three non-small cell lung cancer (NSCLC) cell lines (NCI-H226, A549, COR-L23), small cell lung cancer (SCLC) cell line NCI-H1688 and normal lung fibroblast cell line MRC-5. The study further examined the molecular mechanisms underlying its cytotoxicity via induction of apoptosis in NCI-H226 cells. Methods: The cytotoxic effect of Benjakul was determined by SRB assay. The effect of Benjakul on cell cycle distribution was assessed by flow cytometric analysis. The apoptotic effects of Benjakul were determined by sub-G1 quantitation and Annexin V-FITC/PI flow cytometric analyses as well as by changes in caspase-3 activity. Results: Benjakul exerted potent cytotoxicity on NCI-H226 and A549 cells but lower cytotoxicity on COR-L23 and NCI-H1688 cells without any cytotoxic effect on normal cells. Molecular studies showed that Benjakul extract induced G2/M phase arrest in human NCI-H226 cells in a dose-dependent manner. The highest concentration of Benjakul (150 μg/ml) led to the highest increase in the G2/M population at 12 h, followed by the highest increase in the sub-G1 population (apoptotic cells) at 60 h. Benjakul extract also induced early apoptosis (AnnexinV +/PI−) in NCI-H226 cells in a dose- and time- dependent manner. Moreover, treatment with 150 μg/ml Benjakul extract for 36 h markedly increased caspase-3 activity by 3.5-fold, and pretreatment with the general caspase inhibitor z-VAD-fmk completely abolished such activity. Conclusions: This study reveals for the first time the regulation of apoptosis in human lung cancer NCI-H226 cells through caspase-dependent mechanism by Benjakul extract.Keywords: apoptosis, Benjakul, caspase activation, cytotoxicity
Procedia PDF Downloads 4432076 The Understanding of Biochemical and Molecular Analysis of Diabetic Rats Treated with Andrographis paniculata and Erythrina indica Methanol Extract
Authors: Chakrapani Pullagummi, Arun Jyothi Bheemagani, B. Chandra Sekhar Singh, Prem Kumar, A. Roja Rani
Abstract:
Diabetes mellitus describes a metabolic disorder of multiple aetiology characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion and its action. The objective of present study was alloxan induced diabetes in S.D (Sprague Dawley) rats, treated with leaf extract of Andrographis paniculata and bark extract of Erythrina indica. Plant extract treated rats were analyzed biochemically and molecularly. on normal and diabetic rats. The changes in MDA (lipid peroxidation) and glucose (by GOD method) levels in blood of both normal and diabetic rat were analyzed. Diabetes induced rats were treated with methanolic extracts of Andrographis paniculata leaf and Erythrina indica bark which are of medicinal importance. Later after inducing diabetes the rats were treated with medicinal plant extracts, Andrographis paniculata leaf and Erythrina indica bark which are well known for their anti diabetic and antioxidative property in order to control the glucose and MDA levels. The blood plasma of diabetic and normal rats was analyzed for the levels of MDA (lipid peroxidation) and glucose levels. Results of this study suggested that the Andrographis paniculata leaf and Erythrina indica can be used as a potential natural antidiabetic agent for treating and postponing the appearance of complications that arise due to Diabetes. Molecular study deals with the analysis of binding mechanism of 2 selected natural compounds from Andrographis and Erythrina extracts against the novel target for type T2D namely PPAR-γ compared with Rosiglitazone (standard compound). The results revealed that most of the selected herbal lead compounds were effective targets against the receptors. These compounds showed favorable interactions with the amino acid residues thereby substantiating their proven efficacy as anti-diabetic compounds.Keywords: andrographis paniculata, erythrina indica, alloxan, lipid peroxidation, blood glucose level, PPAR-γ
Procedia PDF Downloads 4762075 Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs
Authors: Madhu Sarwan, Ritu Dubey, Sadhna Singh
Abstract:
We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs.Keywords: III-V alloy, elastic moduli, phase transition, semiconductors
Procedia PDF Downloads 5432074 In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP
Authors: Surbhi Surbhi, Andrea Erni, Gunter Meister, Harold Cremer, Christophe Beclin
Abstract:
MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments.Keywords: RNA-induced silencing complexes, TNRC6B, miRNA, argonaute, synapse, neuronal plasticity, neurogenesis
Procedia PDF Downloads 1312073 Changes in Expression of Galanin in the CSMG Neurons Supplying the Prepyloric Area of the Porcine Stomach Induced by Intragastric Infusion of Hydrochloric Acid
Authors: Katarzyna Palus, Jarosław Całka
Abstract:
Gastrointestinal disorders, especially acid-related diseases, including peptic and duodenal ulcers, gastroesophageal reflux disease, upper GI bleeding or stress-related mucosal disease, are currently serious health issues encountered very frequently in patients worldwide. However, to date, the response of sympathetic neurons to gastric mucosal injury and local inflammation following hyperacidity is unknown. Thus, the present study was designed to determine possible changes in expression of galanin (GAL) in the CSMG neurons supplying the prepyloric area of the porcine stomach in a physiological state and following experimentally-induced hyperacidity by using combined retrograde tracing and double-labelling immunohistochemistry. The choice of the domestic pig as an experimental model in the present study is not accidental and is justified by the high degree of physiological and anatomical similarity to human digestive system functions. In this experiment ten juvenile female pigs of the Large White Polish breed were used. The animals were divided into two groups: control and animals with hydrochloric acid infusion (HCl). The neuronal retrograde marker Fast Blue (FB) was injected into the anterior prepyloric wall of the stomach of all animals. After 23 days, animals of the HCl-group were reintroduced into a state of general anesthesia and intragastrically given 5 ml/kg of body weight of 0.25 M aqueous solution of hydrochloric acid. On the 28th day, all animals were euthanized. The CSMG complexes were then collected and the CSMG cryostat sections were stained immunocytochemically for GAL and TH (tyrosine hydroxylase). Immunohistochemistry revealed that in the control group 8.40 ± 0.53 % out of 200 FB-positive CSMG neurons contained GAL. In HCl group upregulation of the GAL-IR neurons to 22.52 ± 1.18 % were observed. All GAL-IR neurons in both groups showed the simultaneously TH immunoreactivity. Increase in the expression of GAL in FB-positive neurons of the HCL group may suggest its participation in the protective mechanisms of neurons in different pathological processes, such as gastric hyperacidity.Keywords: coeliac-superior mesenteric ganglion complex, gastric innervation, hyperacidity, immunohistochemistry
Procedia PDF Downloads 2452072 Rapid, Automated Characterization of Microplastics Using Laser Direct Infrared Imaging and Spectroscopy
Authors: Andreas Kerstan, Darren Robey, Wesam Alvan, David Troiani
Abstract:
Over the last 3.5 years, Quantum Cascade Lasers (QCL) technology has become increasingly important in infrared (IR) microscopy. The advantages over fourier transform infrared (FTIR) are that large areas of a few square centimeters can be measured in minutes and that the light intensive QCL makes it possible to obtain spectra with excellent S/N, even with just one scan. A firmly established solution of the laser direct infrared imaging (LDIR) 8700 is the analysis of microplastics. The presence of microplastics in the environment, drinking water, and food chains is gaining significant public interest. To study their presence, rapid and reliable characterization of microplastic particles is essential. Significant technical hurdles in microplastic analysis stem from the sheer number of particles to be analyzed in each sample. Total particle counts of several thousand are common in environmental samples, while well-treated bottled drinking water may contain relatively few. While visual microscopy has been used extensively, it is prone to operator error and bias and is limited to particles larger than 300 µm. As a result, vibrational spectroscopic techniques such as Raman and FTIR microscopy have become more popular, however, they are time-consuming. There is a demand for rapid and highly automated techniques to measure particle count size and provide high-quality polymer identification. Analysis directly on the filter that often forms the last stage in sample preparation is highly desirable as, by removing a sample preparation step it can both improve laboratory efficiency and decrease opportunities for error. Recent advances in infrared micro-spectroscopy combining a QCL with scanning optics have created a new paradigm, LDIR. It offers improved speed of analysis as well as high levels of automation. Its mode of operation, however, requires an IR reflective background, and this has, to date, limited the ability to perform direct “on-filter” analysis. This study explores the potential to combine the filter with an infrared reflective surface filter. By combining an IR reflective material or coating on a filter membrane with advanced image analysis and detection algorithms, it is demonstrated that such filters can indeed be used in this way. Vibrational spectroscopic techniques play a vital role in the investigation and understanding of microplastics in the environment and food chain. While vibrational spectroscopy is widely deployed, improvements and novel innovations in these techniques that can increase the speed of analysis and ease of use can provide pathways to higher testing rates and, hence, improved understanding of the impacts of microplastics in the environment. Due to its capability to measure large areas in minutes, its speed, degree of automation and excellent S/N, the LDIR could also implemented for various other samples like food adulteration, coatings, laminates, fabrics, textiles and tissues. This presentation will highlight a few of them and focus on the benefits of the LDIR vs classical techniques.Keywords: QCL, automation, microplastics, tissues, infrared, speed
Procedia PDF Downloads 662071 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model
Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche
Abstract:
Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins
Procedia PDF Downloads 2922070 Characterization of Platelet Mitochondrial Metabolism in COVID-19 Caused Acute Respiratory Distress Syndrome (ARDS)
Authors: Anna Höfer, Johannes Herrmann, Patrick Meybohm, Christopher Lotz
Abstract:
Mitochondria are pivotal for energy supply and regulation of cellular functions. Deficiencies of mitochondrial metabolism have been implicated in diverse stressful conditions including infections. Platelets are key mediators for thrombo-inflammation during development and resolution of acute respiratory distress syndrome (ARDS). Previous data point to an exhausted platelet phenotype in critically-ill patients with coronavirus 19 disease (COVID-19) impacting the course of disease. The objective of this work was to characterize platelet mitochondrial metabolism in patients suffering from COVID-19 ARDSA longitudinal analysis of platelet mitochondrial metabolism in 24 patients with COVID-19 induced ARDS compared to 35 healthy controls (ctrl) was performed. Blood samples were analyzed at two time points (t1=day 1; t2=day 5-7 after study inclusion). The activity of mitochondrial citrate synthase was photometrically measured. The impact of oxidative stress on mitochondrial permeability was assessed by a photometric calcium-induced swelling assay and the activity of superoxide dismutase (SOD) by a SOD assay kit. The amount of protein carbonylation and the activity of mitochondria complexes I-IV were photometrically determined. Levels of interleukins (IL)-1α, IL-1β and tumor necrosis factor (TNF-) α were measured by a Multiplex assay kit. Median age was 54 years, 63 % were male and BMI was 29.8 kg/m2. SOFA (12; IQR: 10-15) and APACHE II (27; IQR: 24-30) indicated critical illness. Median Murray Score was 3.4 (IQR: 2.8-3.4), 21/24 (88%) required mechanical ventilation and V-V ECMO support in 14/24 (58%). Platelet counts in ARDS did not change during ICU stay (t1: 212 vs. t2: 209 x109/L). However, mean platelet volume (MPV) significantly increased (t1: 10.6 vs. t2: 11.9 fL; p<0.0001). Citrate synthase activity showed no significant differences between ctrl and ARDS patients. Calcium induced swelling was more pronounced in patients at t1 compared to t2 and to ctrl (50µM; t1: 0.006 vs. ctrl: 0.016 ΔOD; p=0.001). The amount of protein carbonylation as marker for irreversible proteomic modification constantly increased during ICU stay and compared to ctrl., without reaching significance. In parallel, superoxid dismutase activity gradually declined during ICU treatment vs. ctrl (t2: - 29 vs. ctrl.: - 17 %; p=0.0464). Complex I analysis revealed significantly stronger activity in ARDS vs. ctrl. (t1: 0.633 vs. ctrl.: 0.415 ΔOD; p=0.0086). There were no significant differences in complex II, III or IV activity in platelets from ARDS patients compared to ctrl. IL-18 constantly increased during the observation period without reaching significance. IL-1α and TNF-α did not differ from ctrl. However, IL-1β levels were significantly elevated in ARDS (t1: 16.8; t2: 16.6 vs. ctrl.: 12.4 pg/mL; p1=0.0335, p2=0.0032). This study reveals new insights in platelet mitochondrial metabolism during COVID-19 caused ARDS. it data point towards enhanced platelet activity with a pronounced turnover rate. We found increased activity of mitochondria complex I and evidence for enhanced oxidative stress. In parallel, protective mechanisms against oxidative stress were narrowed with elevated levels of IL-1β likely causing a pro-apoptotic environment. These mechanisms may contribute to platelet exhaustion in ARDS.Keywords: acute respiratory distress syndrome (ARDS), coronavirus 19 disease (COVID-19), oxidative stress, platelet mitochondrial metabolism
Procedia PDF Downloads 592069 The Impact of Water Reservoirs on Biodiversity and Food Security and the Creation of Adaptation Mechanisms
Authors: Inom S. Normatov, Abulqosim Muminov, Parviz I. Normatov
Abstract:
Problems of food security and the preservation of reserved zones in the region of Central Asia under the conditions of the climate change induced by the placement and construction of large reservoirs are considered. The criteria for the optimum placement and construction of reservoirs that entail the minimum impact on the environment are established. The need for the accounting of climatic parameters is shown by the calculation of the water quantity required for the irrigation of agricultural lands.Keywords: adaptation, biodiversity, food security, water reservoir, risk
Procedia PDF Downloads 2562068 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis
Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou
Abstract:
Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration
Procedia PDF Downloads 1382067 Possible Sulfur Induced Superconductivity in Nano-Diamond
Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich
Abstract:
We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy
Procedia PDF Downloads 4932066 New Insights into Ethylene and Auxin Interplay during Tomato Ripening
Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto
Abstract:
Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk
Procedia PDF Downloads 4612065 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells
Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo
Abstract:
The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes
Procedia PDF Downloads 4102064 Mechanical Responses to Hip Versus Knee Induced Muscle Fatigue in Patellofemoral Pain Syndrome
Authors: Eman Ahmed Ahmed, Ghada Abdelmoneim Mohamed, Hamada Ahmed Hamada, Nagui Sobhi Nassif
Abstract:
Impaired skeletal muscle endurance may be an important causal factor in the development of patellofemoral pain syndrome (PFPS). However, there is lack of information regarding the effect of hip versus knee muscle fatigue on isokinetic parameters, and myoelectric activity of hip and knee muscles in these patients. Purpose: The study was conducted to investigate the effect of hip abductors versus knee extensors fatigue protocol on knee proprioception, hip and knee muscle strength and their myoelectric activity in patients with PFPS. Methods: Fifteen female patients with PFPS participated in the study. They were tested randomly under two fatiguing conditions; hip abductors and knee extensors fatigue protocols. Isolated muscle fatigue of two muscles was induced isokinetically on the affected side in a two separate sessions with a rest interval of at least three days. After determining peak torque, patients performed continuous maximal concentric-eccentric contraction of the selected muscle until the torque output dropped below 50% of peak torque value for 3 consecutive repetitions. Knee proprioception, eccentric hip abductors' peak torque, eccentric knee extensors' peak torque, EMG ratio of vastus medialis obliquus (VMO) / vastus lateralis (VL), and EMG activity of gluteus medius (GM) muscle, were recorded before and immediately after each fatigue protocol using the Biodex Isokinetic system and EMG Myosystem. Results: Two-way within subject MANOVA revealed that eccentric knee extensors’ peak torque decreased significantly after hip abductors fatigue protocol compared to pre fatigue condition (p<0.05). On the other hand, there was no statistically significant difference in the eccentric hip abductors’ peak torque after admitting knee extensors fatigue protocol (p > 0.05). Moreover, no significant difference was found in knee proprioception, EMG ratio of VMO/VL, and EMG activity of GM muscle, after either hip or knee fatigue protocol (p>0.05). Conclusion: A hip focused rehabilitation program may be beneficial in improving knee function through correcting faulty kinematics and hence decrease knee loading in patients with PFPS.Keywords: electromyography, knee proprioception, mechanical responses, muscle fatigue, patellofemoral pain syndrome
Procedia PDF Downloads 3112063 Profiling of Apoptotic Protein Expressions after Trabectedin Treatment in Human Prostate Cancer Cell Line PC-3 by Protein Array Technology
Authors: Harika Atmaca, Emir Bozkurt, Latife Merve Oktay, Selim Uzunoglu, Ruchan Uslu, Burçak Karaca
Abstract:
Microarrays have been developed for highly parallel enzyme-linked immunosorbent assay (ELISA) applications. The most common protein arrays are produced by using multiple monoclonal antibodies, since they are robust molecules which can be easily handled and immobilized by standard procedures without loss of activity. Protein expression profiling with protein array technology allows simultaneous analysis of the protein expression pattern of a large number of proteins. Trabectedin, a tetrahydroisoquinoline alkaloid derived from a Caribbean tunicate, Ecteinascidia turbinata, has been shown to have antitumor effects. Here, we used a novel proteomic approach to explore the mechanism of action of trabectedin in prostate cancer cell line PC-3 by apoptosis antibody microarray. XTT cell proliferation kit and Cell Death Detection Elisa Plus Kit (Roche) was used for measuring cytotoxicity and apoptosis. Human Apoptosis Protein Array (R&D Systems) which consists of 35 apoptosis related proteins was used to assess the omic protein expression pattern. Trabectedin induced cytotoxicity and apoptosis in prostate cancer cells in a time and concentration-dependent manner. The expression levels of the death receptor pathway molecules, TRAIL-R1/DR4, TRAIL R2/DR5, TNF R1/TNFRSF1A, FADD were significantly increased by 4.0-, 21.0-, 4.20- and 11.5-fold by trabectedin treatment in PC-3 cells. Moreover, mitochondrial pathway related pro-apoptotic proteins Bax, Bad, Cytochrome c, and Cleaved Caspase-3 expressions were induced by 2.68-, 2.07-, 2.8-, and 4.5-fold and the expression levels of anti-apoptotic proteins Bcl-2 and Bcl-XL were reduced by 3.5- and 5.2-fold in PC-3 cells. Proteomic (antibody microarray) analysis suggests that the mechanism of action of trabectedin may be exerted via the induction of both intrinsic and extrinsic apoptotic pathways. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.Keywords: trabectedin, prostate cancer, omic protein expression profile, apoptosis
Procedia PDF Downloads 4422062 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model
Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters
Procedia PDF Downloads 662061 Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats
Authors: H. Haseena Banu, D. Karthick, R. Stalin, E. Nandha Kumar, T. P. Sachidanandam, P. Shanthi
Abstract:
Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here.Keywords: gallic acid, high fat diet, type 2 diabetes mellitus, miRNAs
Procedia PDF Downloads 3492060 Thermal Conductivity and Optical Absorption of GaInAsSb/GaSb Laser Structure: Impact of Annealing Time
Authors: Soufiene Ilahi, Noureddine Yacoubi
Abstract:
GaInAsSb grown on GaSb substrate is an interesting material employed as an active layer in vertical-cavity surface-emitting lasers (VCSELs) operating in mid-infrared emission. This material presents some advantages like highs optical absorption coefficient and good thermal conductivity, which is very desirable for VCSEL application. In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of GaInAsSb/GaSb. The studies are carried out by means of the photo thermal deflection spectroscopy technique (PDS). In fact, optical absorption spectrum and thermal conductivity have been determined by a comparison between the experimental and theoretical phases of the PDS signal. We have found that thermal conductivity increased significantly to 13 W/m.K for GaInAsSb annealed during 60 min. In addition, we have found that bandgap energy is blue-shifted around 30 meV. The amplitudes signal of PDS reveals multiple reflections as a function of annealing time, which reflect the high crystalline quality of the layer.Keywords: thermal conductivity, bandgap energy of GaInAsSb, GaInAsSb active layer, optical absorption
Procedia PDF Downloads 1512059 Immunohistochemical Study on the Effect of Tetracycline Loaded on Nanochitosan in the Treatment of Induced Infection with Porphyromonas gingivalis
Authors: Rania Hanafi Mahmoud Said, Rasha Mohamed Taha
Abstract:
Background: The use of nanoparticles for medication delivery offers the possibility of avoiding the negative effects of systemic antibiotic dosing as well as antibiotic resistance in bacteria. Aim of the study: The goal of this study was to see the efficiency of local administration of tetracycline loaded on nano chitosan in the treatment of the induced infection of the albino rats gingiva with Porphyromonas gingivalis through Immunohistochemical localization of Interleukin-1beta (IL-1β) as a proinflammatory cytokine.Material and methods: Fifty adult male albino rats 150 - 180 grams body weight used in this investigation. Any changes in rats’ weights were detected. The male albino rats were divided haphazardly into five groups as Group I involved ten rats; they served as a normal negative control group. Group II involved ten rats; they were infected once with P.gingivalis that was injected into the interdental gingiva. Group III involved ten rats; they were subjected to the same procedure as group II and then to daily injection at the site of infection with diluted tetracycline powder. Group IV involved ten rats; they were subjected to the same procedure as group II and then to daily injection of nano Chitosan at the site of injection. Group V involved ten rats; they were subjected to the same procedure as group II and then to daily injection of tetracycline loaded on nano Chitosan at the site of injection. After rats had been euthanized, the extraction and preparation of their gingiva were carried out in order to examine histologically and immunohistochemically. Results: The light microscopic results of groups II, III, and IV showed degeneration represented by swollen epithelial cells, collagen fibers dissociation of the connective tissue of lamina propria, and areas of basement membrane discontinuation, while groups I and V showed an almost normal histological picture of gingival tissue. Immunohistochemical results showed a significant difference in Group II and III when compared to control. No significant difference appears in group V when compared to the control (group I). Conclusion: Using nanochitosan as a carrier for tetracycline is a new technology to get over the increasing resistance of tetracycline.Keywords: immunohistochemistry, P.gingivalis, nano-chitosan, tetracycline, periodontitis
Procedia PDF Downloads 1252058 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: current density, high-speed VCSELs, modulation bandwidth, small-signal characteristics, thermal impedance, vertical-cavity surface-emitting lasers
Procedia PDF Downloads 5702057 Optical Ignition of Nanoenergetic Materials with Tunable Explosion Reactivity
Authors: Ji Hoon Kim, Jong Man Kim, Hyung Woo Lee, Soo Hyung Kim
Abstract:
The applications of nanoenergetic materials (nEMs) could be extended by developing more convenient and reliable ignition methods. However, the underwater ignition of nEMs is a significant challenge because water perturbs the reactants prior to ignition and also quenches the subsequent combustion reaction of nEMs upon ignition. In this study, we developed flash and laser-ignitable nEMs for underwater explosion. This was achieved by adding various carbon nanotubes (CNTs) as the optical igniter into an nEM matrix, composed of Al/CuO nanoparticles. The CNTs absorb the irradiated optical energy and rapidly convert it into thermal energy, and then the thermal energy is concentrated to ignite the core catalysts and neighboring nEMs. The maximum burn rate was achieved by adding 1 wt% CNTs into the nEM matrix. The burn rate significantly decreased with increasing amount of CNTs (≥ 2 wt%), indicating that the optical ignition and controlled-explosion reactivity of nEMs are possible by incorporating an appropriate amount of CNTs.Keywords: nanoenergetic materials, carbon nanotubes, optical ignition, tunable explosion
Procedia PDF Downloads 3042056 The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph
Authors: Beth Taylor, Kojima Mituaki, Atsushi Senda, Koji Morishita, Yasuhiro Otomo
Abstract:
Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients.Keywords: exosomes, inflammation, intestinal ischaemia, mesenteric lymph, vagal stimulation
Procedia PDF Downloads 1342055 Toxicological and Histopathological Studies on the Effect of Tartrazine in Male Albino Rats
Authors: F. Alaa Ali, S. A. Sherein Abdelgayed, S. Osama. EL-Tawil, M. Adel Bakeer
Abstract:
Tartrazine is an organic azo dyes food additive widely used in foods, drugs, and cosmetics. The present study aimed to investigate the toxic effects of tartrazine on kidneys and liver biomarkers in addition to the investigation of oxidative stress and change of histopathological structure of liver and kidneys in 30 male rats. Tartrazine was orally administrated daily at dose 200 mg/ kg bw (1/ 10 LD50) for sixty days. Serum and tissue samples were collected at the end of the experiment to investigate the underlying mechanism of tartrazine through assessment oxidative stress (Glutathione (GSH), Superoxide dismutase (SOD) and malondialdehyde (MDA) and biochemical markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), Total protein and Urea). Liver and kidneys tissue were collected and preserved in 10% formalin for histopathological examination. The obtained values were statistically analyzed by one way analysis of variance (ANOVA) followed by multiple comparison test. Biochemical analysis revealed that tartrazine induced significant increase in serum ALT, AST, total protein, urea level compared to control group. Tartrazine showed significant decrease in liver GSH and SOD where their values when compared to control group. Tartrazine induced increase in liver MDA compared to control group. Histopathology of the liver showed diffuse vacuolar degeneration in hepatic parenchyma, the portal area showed sever changes sever in hepatoportal blood vessels and in the bile ducts. The kidneys showed degenerated tubules at the cortex together with mononuclear leucocytes inflammatory cells infiltration. There is perivascular edema with inflammatory cell infiltration surrounding the congested and hyalinized vascular wall of blood vessel. The present study indicates that the subchronic effects of tartrazine have a toxic effect on the liver and kidneys together with induction of oxidative stress by formation of free radicals. Therefore, people should avoid the hazards of consuming tartrazine.Keywords: albino rats, tartrazine, toxicity, pathology
Procedia PDF Downloads 3572054 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1202053 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis
Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li
Abstract:
One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor
Procedia PDF Downloads 2522052 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem
Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis
Abstract:
Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile
Procedia PDF Downloads 2592051 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor
Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan
Abstract:
In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces
Procedia PDF Downloads 1342050 Inhibitory Effect of Coumaroyl Lupendioic Acid on Inflammation Mediator Generation in Complete Freund’s Adjuvant-Induced Arthritis
Authors: Rayhana Begum, Manju Sharma
Abstract:
Careya arborea Roxb. belongs to the Lecythidaceae family, is traditionally used in tumors, anthelmintic, bronchitis, epileptic fits, astringents, inflammation, an antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, toothache, and ear pain. The present study was focused on investigating the anti-arthritic effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark in the chronic inflammatory model and further assessing its possible mechanism on the modulation of inflammatory biomarkers. Arthritis was induced by injecting 0.1 ml of Complete Freund’s Adjuvant (5 mg/ml of heat killed Mycobacterium tuberculosis) into the subplantar region of the left hind paw. Treatment with coumaroyl lupendioic acid (10 and 20 mg/kg, p.o.) and reference drugs (indomethacin and dexamethasone at the dose of 5 mg/kg, p.o.) were started on the day of induction and continued up to 28 days. The progression of arthritis was evaluated by measuring paw volume, tibio tarsal joint diameters, and arthritic index. The effect of coumaroyl lupendioic acid (CLA) on the production PGE₂, NO, MPO, NF-κB, TNF-α, IL-1β, and IL-6 on serum level as well as inflamed paw tissue were also assessed. In addition, ankle joints and spleen were collected and prepared for histological examination. CLA in inflamed rats resulted in significant amelioration of paw edema, tibio-tarsal joint swelling and arthritic score as compared to CFA control group. The results indicated that CLA treated groups markedly decreased the levels of inflammatory mediators (PGE₂, NO, MPO and NF-κB levels) and down-regulated the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in paw tissue homogenates as well as in serum. However, the more pronounced effect was observed in the inflamed paw tissue homogenates. CLA also revealed a protective effect to the tibio-tarsal joint cartilage and spleen. These results suggest that coumaroyl lupendioic acid inhibits inflammation may be through the suppression of the cascade of proinflammatory mediators via the down-regulation of NF-ҡB.Keywords: complete Freund’s adjuvant , Coumaroyl lupendioic acid, pro-inflammatory cytokines, prostaglandin E2
Procedia PDF Downloads 1412049 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 1322048 The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers
Authors: A. K. Tursunova, O. V. Chebonenko, A. Zh. Amirkulova, A. O. Abaildayev, O. A. Sapko, Y. M. Dyo, A. Sh. Utarbaeva
Abstract:
Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times.Keywords: fusarium solani, PR-proteins, peroxidase, solanum tuberosum
Procedia PDF Downloads 203