Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1380

Search results for: in vitro

1380 Factors Affecting the Results of in vitro Gas Production Technique

Authors: O. Kahraman, M. S. Alatas, O. B. Citil

Abstract:

In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results.

Keywords: In vitro, gas production technique, Hohenheim feed test, standardization

Procedia PDF Downloads 543
1379 Feed Value of Selected Nigerian Browse Plants: Chemical Composition and in vitro Digestibility

Authors: Isaac Samuel

Abstract:

A study was conducted to determine the in-vitro degradation of selected Nigerian browse plants consumed by small ruminants on free range in northern guinea savannah region of Nigeria using in vitro gas production, proximate composition, fibre components, methane gas production and dry matter degradation as tools. The leaves samples of the selected browse plants were collected, processed and incubated using in vitro gas dry matter degradation techniques. Results obtained showed variation in the rate of degradation. The result obtained from chemical analysis showed that the CP content of A. occidentale (26.49%) was higher than F. thonningi (23.58%), M. indica (20.58%) and T. catappa (18.61%). Both ADF and NDF of A. occidentale (40.00 and 50.00) were as well higher than F. thonningi (20.00 and 40.00), M. indica (20.00 and 40.00) and T.catappa (20.00 and 42.00). Results from in vitro gas production however showed that T. catappa (23.67ml/DM) has a significantly higher (p<0.05) value than F.thonningi (20.67ml/DM), A. occidentale (16.67ml/DM), and M. indica(14.00ml/DM) at 72 hours of incubation. Methane gas production and in vitro gas production can be used to predict dry matter degradation and nutritive value of feedstuff for small ruminants. A. occidentale with the least methane gas production and highest crude protein (CP) content might have the most nutritive value among the browse plants investigated.

Keywords: in vitro, degradation, browse, gas production

Procedia PDF Downloads 314
1378 Investigating the Successes of in vitro Embryogenesis

Authors: Zelikha Labbani

Abstract:

The in vitro isolated microspore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a microspore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the microspore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of microspore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, microspore became a strategy to achieve various objectives particularly in genetic engineering. In this communication we would show the most recent advances in the producing haploid embryos via in vitro isolated microspore culture.

Keywords: in vitro isolated microspore culture, success, haploid cells, bioinformatics, biomedicine

Procedia PDF Downloads 434
1377 Design, Synthesis and in-vitro Antitumor Evaluation of Some Novel Substituted Quinazoline Derivatives

Authors: Adel S. El-Azab, Alaa A. M. Abdel-Aziz, Ibrahim A. Al-Suwaidan, Amer M. Alanazi

Abstract:

A novel series of 2,3,6-trisubstitute quinazolinone were designed, synthesized, and evaluated for their in-vitro antitumor activity. 3 (Benzylideneamino)-6-chloro-2-p-tolylquinazolin-4(3H)-One, 2-[(4-oxo-3-phenethyl-3,4-dihydroquinazolin-2-yl)thio]-N-(3,4;5-trimethoxyphenyl) acetamide and 3-(3-benzyl-6-methyl-4-oxo-3, 4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl) propanamide have shown amazing broad spectrum antitumor activity with mean GI50; 15.8, 3.16, and 7.4 μM respectively compared to known Quinazoline Derivatives antitumor drug 5-FU mean GI50=22.6 μM.

Keywords: quinazoline derivatives, in vitro antitumor, synthesis, 5-FU, NCI

Procedia PDF Downloads 495
1376 Effect of IGF-I on Ovine Oocytes Maturation and Subsequent Embryo Development following in Vitro Fertilization (IVF)

Authors: Babak Qasemi-Panahi, Gholamali Moghaddam, Seyed-Abbas Rafat, Hossein Daghigh Kia, Mansoureh Movahedin, Reza Hadavi

Abstract:

The objective of this study was to determine the effects of IGF-I on ovine oocytes maturation and subsequent development of embryos derived from in vitro fertilization (IVF). In vitro maturation (IVM) of oocytes and in vitro culture (IVC) of embryos was conducted with or without 100 ng/mL IGF-1. In the IGF-I treated group, mean percentage of oocyte maturation was significantly higher than the control group (57.67 ± 3.04 versus 49.81 ± 3.04%, respectively, P < 0.05). However, in comparison with control group, there was no significant effect of IGF-1 on rates of cleavage, morula, and blastocyst formation (85% versus 84%; 63% versus 65%, and 40% to 39%, respectively). These data demonstrate that IGF-I has a positive effect on ovine oocyte maturation rate, but it has not the significant outcome on embryo development.

Keywords: ovine, IGF-I, IVM, ICSI

Procedia PDF Downloads 639
1375 Successes on in vitro Isolated Microspores Embryogenesis

Authors: Zelikha Labbani

Abstract:

The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture.

Keywords: haploid cells, In Vitro isolated microspore culture, success

Procedia PDF Downloads 576
1374 On In vitro Durum Wheat Isolated Microspore Culture

Authors: Zelikha Labbani

Abstract:

Since its creation in 1964 by Guha and Maheshwari in India on Datura innoxia Mill, in vitro androgenesis has become the method of choice in the production of doubled haploid in many species. However, in durum wheat, the Doubled haploid plant breeding programs remained limited due to the low production of androgenetic embryos and converting them into fertile green plants. We describe here an efficient method for inducing embryos and regenerating green plants directly from isolated microspores of durum wheat.

Keywords: durum wheat, haploid embryos, on in vitro, pretreatment

Procedia PDF Downloads 313
1373 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 464
1372 Effects of Fenugreek Seed Extract on in vitro Maturation and Subsequent Development of Sheep Oocytes

Authors: Ibrahim A. H. Barakat, Ahmed R. Al-Himaidi

Abstract:

The present study was conducted to determine the role and optimum concentration of fenugreek seed extract during in-vitro maturation on in-vitro maturation and developmental competence of Neaimi sheep oocytes following in-vitro fertilization. The Cumulus Oocyte Complexes (COCs) collected from sheep slaughterhouse ovaries were randomly divided into three groups, and they were matured for 24 hrs. in maturation medium containing fenugreek seed extract (0, 1 and 10 µg ml-1). Oocytes of a control group were matured in a medium containing 1 µg ml-1 estradiol 17β. After maturation, half of oocytes were fixed and stained for evaluation of nuclear maturation. The rest of oocytes were fertilized in vitro with fresh semen, then cultured for 9 days for the assessment of the developmental capacity of the oocytes. The results showed that the mean values of oocytes with expanded cumulus cells percentage were not significantly different among all groups (P < 0.05). But nuclear maturation rate of oocytes matured with 10 µg ml-1 fenugreek seed extract was significantly higher than that of the control group. The maturation rate and development to morula and blastocyst stage for oocytes matured at 10 µg ml-1 fenugreek seed extract was significantly higher than those matured at 1µg ml-1 of fenugreek seed extract and the control group. In conclusion, better maturation and developmental capacity rate to morula and blastocyst stage were obtained by the addition of 10 µg ml-1 fenugreek seed extract to maturation medium than addition of 1 µg ml-1 estradiol-17β (P < 0.05).

Keywords: fenugreek seed extract, in vitro maturation, sheep oocytes, in vitro fertilization, embryo development

Procedia PDF Downloads 354
1371 In vitro and invivo Antioxidant Studies of Grewia crenata Leaves Extract in Albino Rats

Authors: A. N.Ukwuani, A. K. Abdulfatah

Abstract:

G. crenata is used locally for the treatment of fractured bones, wound healing and inflammatory conditions. In vitro and in vivo antioxidant activity of hydromethanolic extracts of the leaves of G. crenata were assessed. The phytochemical analysis shows the presence of phenols, flavonoids, saponins, cardiac glycosides and tannins. An in vitro quantitative analysis of phenols, flavonoids and tannins respectively were (164±1.20, 199±0.88 and 88.67±0.88 mg/100g FW). In vivo studies of hydromethanolic extract demonstrated a dose dependent increase in hepatic superoxide dismutase (1.14±0.14, 2.13±0.11, 2.55±0.11 U/mg Protein) with improvement in hepatic glutathione (6.98±0.42, 8.91±0.37, 11.07±0.46 µM/mg Protein) and Catalase (4.47±0.05, 6.24±0.02, 7.17±0.04 U/mg Protein) and Total protein (6.18±0.08, 6.69±0.18, 7.27±0.16 mg/ml) respectively at 100-300mg/kg body weight Grewia crenata leaves when compared to the control and standard drug. It can be concluded from the present findings of that G. crenata leaves possess antioxidant potential.

Keywords: Grewia crenata, antioxidant, hydromethanolic extract, in vivo, in vitro

Procedia PDF Downloads 494
1370 Biofertilization of Cucumber (Cucumis sativus L.) Using Trichoderma longibrachiatum

Authors: Kehinde T. Kareem

Abstract:

The need to increase the production of cucumber has led to the use of inorganic fertilizers. This chemical affects the ecological balance of nature by increasing the nitrogen and phosphorus contents of the soil. Surface runoffs into rivers and streams cause eutrophication which affects aquatic organisms as well as the consumers of aquatic animals. Therefore, this study was carried out in the screenhouse to investigate the use of a plant growth-promoting fungus; Trichoderma longibrachiatum for the growth promotion of conventional and in-vitro propagated Ashley and Marketmoor cucumber. Before planting of cucumber, spore suspension (108 cfu/ml) of Trichoderma longibrachiatum grown on Potato dextrose agar (PDA) was inoculated into the soil. Fruits were evaluated for the presence of Trichoderma longibrachiatum using a species-specific primer. Results revealed that the highest significant plant height produced by in-vitro propagated Ashley was 19 cm while the highest plant height of in-vitro propagated Marketmoor was 19.67 cm. The yield of the conventional propagated Ashley cucumber showed that the number of fruit/plant obtained from T. longibrachiatum-fertilized plants were significantly more than those of the control. The in-vitro Ashely had 7 fruits/plant while the control produced 4 fruits/plant. In-vitro Marketmoor had ten fruits/plant, and the control had a value of 4 fruits/plant. There were no traces of Trichoderma longibrachiatum genes in the harvested cucumber fruits. Therefore, the use of Trichoderma longibrachiatum as a plant growth-promoter is safe for human health as well as the environment.

Keywords: biofertilizer, cucumber, genes, growth-promoter, in-vitro, propagation

Procedia PDF Downloads 201
1369 Selection of Developmental Stages of Bovine in vitro-Derived Blastocysts Prior to Vitrification and Embryo Transfer: Implications for Cattle Breeding Programs

Authors: Van Huong Do, Simon Walton, German Amaya, Madeline Batsiokis, Sally Catt, Andrew Taylor-Robinson

Abstract:

Identification of the most suitable stages of bovine in vitro-derived blastocysts (early, expanded and hatching) prior to vitrification is a straightforward process that facilitates the decision as to which blastocyst stage to use for transfer of fresh and vitrified embryos. Research on in vitro evaluation of suitable stages has shown that the more advanced developmental stage of blastocysts is recommended for fresh embryo transfer while the earlier stage is proposed for embryo transfer following vitrification. There is, however, limited information on blastocyst stages using in vivo assessment. Hence, the aim of the present study was to determine the optimal stage of a blastocyst for vitrification and embryo transfer through a two-step procedure of embryo transfer followed by pregnancy testing at 35, 60 and 90 days of pregnancy. 410 good quality oocytes aspirated by the ovum pick-up technique from 8 donor cows were subjected to in vitro embryo production, vitrification and embryo transfer. Good quality embryos were selected, subjected to vitrification and embryo transfer. Subsequently, 77 vitrified embryos at different blastocyst stages were transferred to synchronised recipient cows. The overall cleavage and blastocyst rates of oocytes were 68.8% and 41.7%, respectively. In addition, the fertility and blastocyst production of 6 bulls used for in vitro fertilization was examined and shown to be statistically different (P<0.05). Results of ongoing pregnancy trials conducted at 35 days, 60 days and 90 days will be discussed. However, preliminary data indicate that individual bulls demonstrate distinctly different fertility performance in vitro. Findings from conception rates would provide a useful tool to aid selection of bovine in vitro-derived embryos for vitrification and embryo transfer in commercial settings.

Keywords: blastocyst, embryo transfer, in vitro-derived embryos, ovum pick-up, vitrification

Procedia PDF Downloads 252
1368 The Evaluation of Substitution of Acacia villosa in Ruminants Ration

Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat

Abstract:

Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.

Keywords: Acacia villosa, digestibility, gas production, secondary compounds

Procedia PDF Downloads 111
1367 In-vitro Antioxidant Activity of Two Selected Herbal Medicines

Authors: S. Vinotha, I. Thabrew, S. Sri Ranjani

Abstract:

Hot aqueous and methanol extracts of the two selected herbal medicines such are Vellarugu Chooranam (V.C) and Amukkirai Chooranam (A.C) were examined for total phenolic and flavonoid contents and in-vitro antioxidant activity using four different methods. The total phenolic and flavonoid contents in methanol extract of V.C were found to be higher (44.41±1.26 mg GAE⁄g; 174.44±9.32 mg QE⁄g) than in the methanol extract of A.C (20.56±0.67 mg GAE⁄g;7.21±0.85 mg QE⁄g). Hot methanol and aqueous extracts of both medicines showed low antioxidant activity in DPPH, ABTS, and FRAP methods and Iron chelating activity not found at highest possible concentration. V.C contains higher concentrations of total phenolic and flavonoid contents than A.C and can also exert greater antioxidant activity than A.C, although the activities demonstrated were lower than the positive control Trolox. The in-vitro antioxidant activity was not related with the total phenolic and flavonoid contents of the methanol and aqueous extracts of both herbal medicines (A.C and V.C).

Keywords: activity, different extracts, herbal medicines, in-vitro antioxidant

Procedia PDF Downloads 364
1366 Growth of Albizia in vitro: Endophytic Fungi as Plant Growth Promote of Albizia

Authors: Reine Suci Wulandari, Rosa Suryantini

Abstract:

Albizia (Paraserianthes falcataria) is a woody plant species that has a high economic value and multifunctional. Albizia is important timber, medicinal plants and can also be used as a plant to rehabilitate critical lands. The demand value of Albizia is increased so that the large quantities and high quality of seeds are required. In vitro propagation techniques are seed propagation that can produce more seeds and quality in a short time. In vitro cultures require growth regulators that can be obtained from biological agents such as endophytic fungi. Endophytic fungi are micro fungi that colonize live plant tissue without producing symptoms or other negative effects on host plants and increase plant growth. The purposes of this research were to isolate and identify endophytic fungi isolated from the root of Albizia and to study the effect of endophytic fungus on the growth of Albizia in vitro. The methods were root isolation, endophytic fungal identification, and inoculation of endophytic fungi to Albizia plants in vitro. Endophytic fungus isolates were grown on PDA media before being inoculated with Albizia sprouts. Incubation is done for 4 (four) weeks. The observed growth parameters were live explant percentage, percentage of explant shoot, and percentage of explant rooted. The results of the research showed that 6 (six) endophytic fungal isolates obtained from the root of Albizia, namely Aspergillus sp., Verticillium sp, Penicillium sp., Trichoderma sp., Fusarium sp., and Acremonium sp. Statistical analysis found that Trichoderma sp. and Fusarium sp. affect in vitro growth of Albizia. Endophytic fungi from the results of this research were potential as plant growth promoting. It can be applied to increase productivity either through increased plant growth and increased endurance of Albizia seedlings to pests and diseases.

Keywords: Albizia, endophytic fungi, propagation, in vitro

Procedia PDF Downloads 223
1365 The Effect of Ethylene Glycol on Cryopreserved Bovine Oocytes

Authors: Sri Wahjuningsih, Nur Ihsan, Hadiah

Abstract:

In the embryo transfer program, to address the limited production of embryos in vivo, in vitro embryo production has become an alternative approach that is relatively inexpensive. One potential source of embryos that can be developed is to use immature oocytes then conducted in vitro maturation and in vitro fertilization. However, obstacles encountered were oocyte viability mammals have very limited that it cannot be stored for a long time, so we need oocyte cryopreservation. The research was conducted to know the optimal concentration use of ethylene glycol as a cryoprotectant on oocytes freezing.Material use in this research was immature oocytes; taken from abbatoir which was aspirated from follicle with diameter 2-6 mm. Concentration ethylen glycol used were 0,5 M, I M, 1,5 M and 2M. The freezing method used was conventional method combined with a five-step protocol washing oocytes from cryoprotectant after thawing. The result showed that concentration ethylen glycol have the significant effect (P<0.05) on oocytes quality after thawing and in vitro maturation. It was concluded that concentration 1,5 M was the best concentration for freezing oocytes using conventional method.

Keywords: bovine, conventional freezing, ethylen glycol, oocytes

Procedia PDF Downloads 316
1364 Comparative Study of Antioxidant Activity in in vivo and in vitro Samples of Purple Greater Yam (Dioscorea alata L).

Authors: Sakinah Abdullah, Rosna Mat Taha

Abstract:

Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, and peroxynitrite which result in oxidative stress leading to cellular damage. Natural antioxidant are in high demand because of their potential in health promotion and disease prevention and their improved safety and consumer acceptability. Plants are rich sources of natural antioxidant. Dioscorea alata L. known as 'ubi badak' in Malaysia were well known for their antioxidant content, but this plant was seasonal. Thus, tissue culture technique was used to mass propagate this plant. In the present work, a comparative study between in vitro (from tissue culture) and in vivo (from intact plant) samples of Dioscorea alata L. for their antioxidant potential by 2,2-diphenil -1- picrylhydrazyl (DPPH) radical scavenging activity method and their total phenolic and flavonoid contents were carried out. All samples had better radical scavenging activity but in vivo samples had the strongest radical scavenging activity compared to in vitro samples. Furthermore, tubers from in vivo samples showed the greatest free radical scavenging effect and comparatively greater phenolic content than in vitro samples.

Keywords: Dioscorea alata, tissue culture, antioxidant, in vivo, in vitro, DPPH

Procedia PDF Downloads 426
1363 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 309
1362 In-Vitro Dextran Synthesis and Characterization of an Intracellular Glucosyltransferase from Leuconostoc Mesenteroides AA1

Authors: Afsheen Aman, Shah Ali Ul Qader

Abstract:

Dextransucrase [EC 2.4.1.5] is a glucosyltransferase that catalysis the biosynthesis of a natural biopolymer called dextran. It can catalyze the transfer of D-glucopyranosyl residues from sucrose to the main chain of dextran. This unique biopolymer has multiple applications in several industries and the key utilization of dextran lies on its molecular weight and the type of branching. Extracellular dextransucrase from Leuconostoc mesenteroides is most extensively studied and characterized. Limited data is available regarding cell-bound or intracellular dextransucrase and on the characterization of dextran produced by in-vitro reaction of intracellular dextransucrase. L. mesenteroides AA1 is reported to produce extracellular dextransucrase that catalyzes biosynthesis of a high molecular weight dextran with only α-(1→6) linkage. Current study deals with the characterization of an intracellular dextransucrase and in vitro biosynthesis of low molecular weight dextran from L. mesenteroides AA1. Intracellular dextransucrase was extracted from cytoplasm and purified to homogeneity for characterization. Kinetic constants, molecular weight and N-terminal sequence analysis of intracellular dextransucrase reveal unique variation with previously reported extracellular dextransucrase from the same strain. In vitro synthesized biopolymer was characterized using NMR spectroscopic techniques. Intracellular dextransucrase exhibited Vmax and Km values of 130.8 DSU ml-1 hr-1 and 221.3 mM, respectively. Optimum catalytic activity was detected at 35°C in 0.15 M citrate phosphate buffer (pH-5.5) in 05 minutes. Molecular mass of purified intracellular dextransucrase is approximately 220.0 kDa on SDS-PAGE. N-terminal sequence of the intracellular enzyme is: GLPGYFGVN that showed no homology with previously reported sequence for the extracellular dextransucrase. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions. This intracellular dextransucrase is capable of in vitro synthesis of dextran under specific conditions and this biopolymer can be hydrolyzed into different molecular weight fractions for various applications.

Keywords: characterization, dextran, dextransucrase, leuconostoc mesenteroides

Procedia PDF Downloads 351
1361 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 158
1360 Acclimation of in vitro-Propagated Apple Plantlets as Affected by Light Intensity

Authors: Guem-Jae Chung, Jin-Hui Lee, Myung-Min Oh

Abstract:

Environmental control of in vitro-propagated apple plantlets is required for successful acclimation to ex vitro due to its low survival rate. This study aimed to determine the proper lighting condition for ex vitro acclimation of the apple plantlets in plant factories. In vitro-propagated M9 apple plantlets treated with pre-acclimatization for 1 week were exposed to following light treatments for additional 6 weeks; 60 μmol·m⁻²·s⁻¹ (A), 100 μmol·m⁻²·s⁻¹ (B), 140 μmol·m⁻²·s⁻¹ (C), 180 μmol·m⁻²·s⁻¹ (D), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks (E) or 4 weeks (F), 60 μmol·m⁻²·s⁻¹ → 100 μmol·m⁻²·s⁻¹ at 2 weeks → 140 μmol·m⁻²·s⁻¹ at 4 weeks (G) and 60 μmol·m⁻²·s⁻¹ → 140 μmol·m⁻²·s⁻¹ at 4 weeks (H). Shoot height, total leaf area, soil-plant analysis development (SPAD) value, root length, fresh and dry weights of shoots and roots were measured every 2 weeks after transplanting. In addition, the photosynthetic rate was measured at 5 weeks after transplanting. At 6 weeks after transplanting, shoot height of B was significantly higher than the other treatments. SPAD value, total leaf area and root length of B and F were relatively higher than the other treatments. Root fresh weights of B, D, F, and G were relatively higher than those in the other treatments. D induced the highest value in shoot fresh weight probably due to stem hardening, but it also resulted in shoot damage in the early stage of acclimation. Photosynthetic rate at 5 weeks after the transplanting was significantly increased as the light intensity increased. These results suggest that 100 μmol·m⁻²·s⁻¹ for 6 weeks (B) or gradually increased treatment from 60 μmol·m⁻²·s⁻¹ to 140 μmol·m⁻²·s⁻¹ at 2 weeks interval (F) were the proper lighting conditions for successful acclimation of in vitro-propagated apple plantlets. Acknowledgment: This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (315003051SB020).

Keywords: acclimation, in vitro-propagated apple plantlets, light intensity, plant factory

Procedia PDF Downloads 101
1359 Effect of Plant Growth Regulators on in vitro Biosynthesis of Antioxidative Compounds in Callus Culture and Regenerated Plantlets Derived from Taraxacum officinale

Authors: Neha Sahu, Awantika Singh, Brijesh Kumar, K. R. Arya

Abstract:

Taraxacum officinale Weber or dandelion (Asteraceae) is an important Indian traditional herb used to treat liver detoxification, digestive problems, spleen, hepatic and kidney disorders, etc. The plant is well known to possess important phenolic and flavonoids to serve as a potential source of antioxidative and chemoprotective agents. Biosynthesis of bioactive compounds through in vitro cultures is a requisite for natural resource conservation and to provide an alternative source for pharmaceutical applications. Thus an efficient and reproducible protocol was developed for in vitro biosynthesis of bioactive antioxidative compounds from leaf derived callus and in vitro regenerated cultures of Taraxacum officinale using MS media fortified with various combinations of auxins and cytokinins. MS media containing 0.25 mg/l 2, 4-D (2, 4-Dichloro phenoxyacetic acid) with 0.05 mg/l 2-iP [N6-(2-Isopentenyl adenine)] was found as an effective combination for the establishment of callus with 92 % callus induction frequency. Moreover, 2.5 mg/l NAA (α-Naphthalene acetic acid) with 0.5 mg/l BAP (6-Benzyl aminopurine) and 1.5 mg/l NAA showed the optimal response for in vitro plant regeneration with 80 % regeneration frequency and rooting respectively. In vitro regenerated plantlets were further transferred to soil and acclimatized. Quantitative variability of accumulated bioactive compounds in cultures (in vitro callus, plantlets and acclimatized) were determined through UPLC-MS/MS (ultra-performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry) and compared with wild plants. The phytochemical determination of in vitro and wild grown samples showed the accumulation of 6 compounds. In in vitro callus cultures and regenerated plantlets, two major antioxidative compounds i.e. chlorogenic acid (14950.0 µg/g and 4086.67 µg/g) and umbelliferone (10400.00 µg/g and 2541.67 µg/g) were found respectively. Scopoletin was found to be highest in vitro regenerated plants (83.11 µg/g) as compared to wild plants (52.75 µg/g). Notably, scopoletin is not detected in callus and acclimatized plants, but quinic acid (6433.33 µg/g) and protocatechuic acid (92.33 µg/g) were accumulated at the highest level in acclimatized plants as compared to other samples. Wild grown plants contained highest content (948.33 µg/g) of flavonoid glycoside i.e. luteolin-7-O-glucoside. Our data suggests that in vitro callus and regenerated plants biosynthesized higher content of antioxidative compounds in controlled conditions when compared to wild grown plants. These standardized cultural conditions may be explored as a sustainable source of plant materials for enhanced production and adequate supply of oxidative polyphenols.

Keywords: anti-oxidative compounds, in vitro cultures, Taraxacum officinale, UPLC-MS/MS

Procedia PDF Downloads 168
1358 The Influence of Colloidal Metal Nanoparticles on Growth and Proliferation of in Vitro Cultures of Potato

Authors: Przewodowski Włodzimierz, Przewodowska Agnieszka, Sekrecka Danuta, Michałowska Dorota

Abstract:

Colloidal metal nanoparticles are widely applied in various areas and have great potential in different biotechnological applications. Their particular properties associated with both the antiseptic, antioxidant and anti aging properties as well as ability to penetrate most of the biological barriers, synergy in the absorption of nutrients and nontoxic to plants. The properties make them potentially useful in the fast and safe production of healthy, certified starting material in the production of plants exposed to many pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. In this case it is crucial to provide appropriate conditions for the production, storage and distribution of the plant material. Therefore, the aim of the proposed research was to develop and identify the influence of four colloidal metal nanoparticles on growth and proliferation of in vitro cultures of potato (Solanum tuberosum) - one of the most economically important strategic crops in the world. The research on different varieties of potato was performed by placing the explants of the in vitro cultures on sterile Murashige and Skoog (MS) type medium. The influence of the nanocolloids was evaluated using the MS medium impregnated with the examinated nanoparticles. The vigour of growth and the rate of proliferation was examinated for 6-8 weeks with both night/day-length and temperature over the ranges 8/16 h and 20–22 °C respectively. The results of our preliminary work confirmed high usefulness of the nanocolloids in the safe production of the examinated in vitro cultures.

Keywords: colloidal metal nanoparticles, in vitro cultures, potato, propagation

Procedia PDF Downloads 302
1357 Callus Induction, In-Vitro Plant Regeneration and Acclimatization of Lycium barbarum L. (Goji)

Authors: Rosna Mat Taha, Sakinah Abdullah, Sadegh Mohajer, Asmah Awal

Abstract:

Lycium barbarum L. (Goji) belongs to Solanaceae family and native to some areas of China. Ethnobotanical studies have shown that this plant has been consumed by the Chinese since ancient times. It has been used as medicine in providing excellent effects on cardiovascular system and cholesterol level, besides contains high antioxidant and antidiabetic properties. In the present study, some tissue culture work has been carried out to induce callus, in vitro regeneration from various explants of Goji and also some acclimatization protocols were followed to transfer the regenerated plants to soil. The main aims being to establish high efficient regeneration system for mass production and commercialization for future uses, since the growth of this species is very limited in Malaysia. The optimum hormonal regime and the most suitable and responsive explants were identified. It was found that leaves and stems gave good responses. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg/L NAA and 0.5 mg/L BAP was the best for callus induction and MS media fortified with 1.0 mg/L NAA and 1.0 mg/L BAP was optimum for in vitro regeneration. The survival rates of plantlets after acclimatization was 63±1.5 % on black soil and 50±1.3 % on mixed soil (combination of black and red soil at a ratio of 2 to 1), respectively.

Keywords: callus, acclimatization, in vitro culture, regeneration

Procedia PDF Downloads 412
1356 Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)

Authors: H. Chassaigne, S. Gioria, J. Lobo Vicente, D. Carpi, P. Barboro, G. Tomasi, A. Kinsner-Ovaskainen, F. Rossi

Abstract:

Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging.

Keywords: data processing, gold nanoparticles, in vitro systems, metabolomics, proteomics

Procedia PDF Downloads 467
1355 Anticoccidial Activity of Vitis venifera Extract on Oocysts of Different Eimeria Species of Chicken

Authors: Asghar Abbas, Rao Zahid Abbas, Muhammad Asif Raza, Kashif Hussain

Abstract:

In the current experiment, in vitro anticoccidial potential of Vitis venifera (grape seed) extract was evaluated. For this purpose, an in vitro sporulation inhibition assay was used. Collected oocysts of different Eimeria species of chicken were exposed to six different concentrations (w/v) of Vitis venifera extract (TAE) in 10% dimethylsulphoxide solution (DMSO). Dimethylsulphoxide (DMSO) and potassium dichromate solution (K₂Cr₂O₇) served as control groups. Results of the study revealed that Vitis venifera extract (TAE) showed an inhibitory effect on sporulation (%) and damage (%) of Eimeria oocysts in a dose-dependent manner as compared to both control groups. Vitis venifera extract also damaged the morphology of oocysts in terms of shape, size, and number of sporocysts.

Keywords: Vitis venifera, in vitro, Eimeria, oocysts

Procedia PDF Downloads 149
1354 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco

Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad

Abstract:

The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.

Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility

Procedia PDF Downloads 133
1353 SiO2-Ag+Chlorex vs SilverSulfaDiazine: An 'in vitro' and 'in vivo' Silver Challenge

Authors: Roberto Cassino, Valeria Dissette, Carlo Alberto Bignozzi, Daniele Pazzi

Abstract:

Background and Aims: The aim of this work was to investigate, both ‘in vitro’ and ‘in vivo’, if the new SCX technology (SiO2-Ag+Chlorex) can easily defeat infections and it is really more effective than SSD (SilverSulfaDiazine). ‘In vitro’ methods: we tested ‘in vitro’ the effectiveness of both silver materials using a pool of 5 strains: Pseudomonas Aeruginosa, Staphylococcus aureus, Escherichia Coli, Enterococcus hirae and Candida Albicans. 100 µl of this pool have been seeded on Petri dishes and kept for 24 hours in incubation at 37 C°. ‘In vivo’ methods: we enrolled patients with multiple infectious chronic wounds (according with cutting & harding criteria for infection); after a qualitative evaluation of the wounds bacterial population, taking a sample by plug, we included in the study 6 patients for a total of 10 wounds, infected by one or more of the microorganisms used for the ‘in vitro’ test. The protocol consisted of a treatment with a spray powder of SSD every 48 hours for 14 days; in case of worsening we should have to start a new treatment with a spray powder containing silicon dioxide, ionic silver and chlorexidine (SiO2-Ag+Chlorex) every 48 hours for 14 days. We evaluated the number of clinical signs of infection and the disappearance or not of the wound edge erithema. ‘In vitro’ results: SSD demonstrated a wide zone of inhibition within 24 hours, but after 5 days there was no more signs of inhibition; on the contrary SCX had a good inhibition ring that lasted more than 5 days. ‘In vivo’ results: all wounds treated with SSD got worse; the signs of infection increased and the wound edge erithema did not disappear. According with the protocol, we treated then all wounds with SCX and they all improved within the period of observation with complete disappearance of clinical signs of infection and no more wound edge erithema. Conclusions: the study demonstrated the effectiveness of SiO2-Ag+Chlorex, especially in terms of long lasting antimicrobial action. We had the same results ‘in vitro’, so that there has been a perfect correspondence between the laboratory outcomes and the clinical ones.

Keywords: chronic wounds, infections, ionic silver, SSD

Procedia PDF Downloads 276
1352 Effect of Non-Ionic Surfactants on in vitro Release of Ketorolactromethamine

Authors: Ajay Aggarwal, Kamal Saroha, Sanju Nanda

Abstract:

Niosomes or non-ionic surfactant vesicles are microscopic lamellar structures formed on admixture of non-ionic surfactant of the alkyl or dialkyl polyglycerol ether class and cholesterol with subsequent hydration in aqueous media. They are vesicular systems similar to liposomes that can be used as carriers of amphiphilic and lipophilic drugs. Entrapment efficiency was found to be higher in case of niosome prepared with span60 than niosome prepared with tween. The amount of release was found to be in order of Span20>Tween60>Tween20>Span60. As the concentration of surfactant is increased in vitro release was increased due to high entrapment. The stability study of optimized batch revealed that particle size was increased after 3months on increasing the temperature. On the other hand entrapment efficiency was decreased on increasing the temperature.

Keywords: niosomes, vesicles, span, tween, in vitro release

Procedia PDF Downloads 317
1351 Self-Carried Theranostic Nanoparticles for in vitro and in vivo Cancer Therapy with Real-Time Monitoring of Drug Release

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed for improving their drug loading capacities (typically less than 10%) and reducing their potential systemic toxicity. So development of alternative self-carried nanodrug delivery strategies without using any inert carriers is highly desirable. In this study, we developed a self-carried theranostic curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environment, with drug loading capacity higher than 78 wt.%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescent “OFF-ON” activation and real-time monitoring of Cur molecule release, showing its potential for cancer diagnosis. In vitro and in vivo experiments clearly show that therapeutic efficacy of the PEGylated Cur NPs is much better than that of free Cur. This self-carried theranostic strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and diagnosis.

Keywords: drug delivery, in vitro and in vivo cancer therapy, real-time monitoring, self-carried

Procedia PDF Downloads 363