Search results for: kinematics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 72

Search results for: kinematics

72 Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot

Authors: S. Parasuraman, Ler Shiaw Pei

Abstract:

In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.

Keywords: Kinematics, Human Joints, Robotics, Robot Dynamics, Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
71 Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm

Authors: Baki Koyuncu, Mehmet Güzel

Abstract:

The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for this educational manipulator are presented, An effective method is suggested to decrease multiple solutions in inverse kinematics. A visual software package, named MSG, is also developed for testing Motional Characteristics of the Lynx-6 Robot arm. The kinematics solutions of the software package were found to be identical with the robot arm-s physical motional behaviors.

Keywords: Lynx 6, robot arm, forward kinematics, inverse kinematics, software, DH parameters, 5 DOF , SSC-32 , simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5366
70 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Authors: Jolly Shah, S.S.Rattan, B.C.Nakra

Abstract:

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4363
69 Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: Kinematics, degree of freedom, optimization, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6097
68 Simulation of Robotic Arm using Genetic Algorithm and AHP

Authors: V. K. Banga, Y. Singh, R. Kumar

Abstract:

In this paper, we have proposed a low cost optimized solution for the movement of a three-arm manipulator using Genetic Algorithm (GA) and Analytical Hierarchy Process (AHP). A scheme is given for optimizing the movement of robotic arm with the help of Genetic Algorithm so that the minimum energy consumption criteria can be achieved. As compared to Direct Kinematics, Inverse Kinematics evolved two solutions out of which the best-fit solution is selected with the help of Genetic Algorithm and is kept in search space for future use. The Inverse Kinematics, Fitness Value evaluation and Binary Encoding like tasks are simulated and tested. Although, three factors viz. Movement, Friction and Least Settling Time (or Min. Vibration) are used for finding the Fitness Function / Fitness Values, however some more factors can also be considered.

Keywords: Inverse Kinematics, Genetic Algorithm (GA), Analytical Hierarchy Process (AHP), Fitness Value, Fitness Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
67 Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis

Authors: D. Maneetham, L. Sivhour

Abstract:

Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.

Keywords: Forward kinematics, D-H model, robotic toolbox, PC-and EtherCAT based control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
66 Forward Kinematics Analysis of a 3-PRS Parallel Manipulator

Authors: Ghasem Abbasnejad, Soheil Zarkandi, Misagh Imani

Abstract:

In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.

Keywords: Forward kinematics, Homotopy continuationmethod, Parallel manipulators, Rotation matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
65 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
64 Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator

Authors: H. Sadjadian , H.D. Taghirad Member, A. Fatehi

Abstract:

In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.

Keywords: Forward Kinematics, Neural Networks, Numerical Solution, Parallel Manipulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
63 An Iterative Algorithm for Inverse Kinematics of 5-DOF Manipulator with Offset Wrist

Authors: Juyi Park, Jung-Min Kim, Hee-Hwan Park, Jin-Wook Kim, Gye-Hyung Kang, Soo-Ho Kim

Abstract:

This paper presents an iterative algorithm to find a inverse kinematic solution of 5-DOF robot. The algorithm is to minimize the iteration number. Since the 5-DOF robot cannot give full orientation of tool. Only z-direction of tool is satisfied while rotation of tool is determined by kinematic constraint. This work therefore described how to specify the tool direction and let the tool rotation free. The simulation results show that this algorithm effectively worked. Using the proposed iteration algorithm, error due to inverse kinematics converged to zero rapidly in 5 iterations. This algorithm was applied in real welding robot and verified through various practical works.

Keywords: 5-DOF manipulator, Inverse kinematics, Iterative algorithm, Wrist offset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4139
62 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
61 Kinematics and Control System Design of Manipulators for a Humanoid Robot

Authors: S. Parasuraman

Abstract:

In this work, a new approach is proposed to control the manipulators for Humanoid robot. The kinematics of the manipulators in terms of joint positions, velocity, acceleration and torque of each joint is computed using the Denavit Hardenberg (D-H) notations. These variables are used to design the manipulator control system, which has been proposed in this work. In view of supporting the development of a controller, a simulation of the manipulator is designed for Humanoid robot. This simulation is developed through the use of the Virtual Reality Toolbox and Simulink in Matlab. The Virtual Reality Toolbox in Matlab provides the interfacing and controls to an environment which is developed based on the Virtual Reality Modeling Language (VRML). Chains of bones were used to represent the robot.

Keywords: Mobile robot, Robot Kinematics, Robot Navigation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
60 Kinematic Analysis of a Novel Complex DoF Parallel Manipulator

Authors: M.A. Hosseini, P. Ebrahimi Naghani

Abstract:

In this research work, a novel parallel manipulator with high positioning and orienting rate is introduced. This mechanism has two rotational and one translational degree of freedom. Kinematics and Jacobian analysis are investigated. Moreover, workspace analysis and optimization has been performed by using genetic algorithm toolbox in Matlab software. Because of decreasing moving elements, it is expected much more better dynamic performance with respect to other counterpart mechanisms with the same degrees of freedom. In addition, using couple of cylindrical and revolute joints increased mechanism ability to have more extended workspace.

Keywords: Kinematics, Workspace, 3-CRS/PU, Parallel robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
59 Measurement and Analysis of Human Hand Kinematics

Authors: Tamara Grujic, Mirjana Bonkovic

Abstract:

Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reachto- grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.

Keywords: Human hand, kinematics, reach-to-grasp movement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760
58 How the Kinematic Swimming of European Eel Anguilla Anguilla Changes from Axial to Non-axial Velocity Flow

Authors: Younes Matar, Fabien Candelier, Camille Solliec

Abstract:

The aim of this study is to investigate the kinematics of undulatory elongated fish swimming against a velocity flow. We perform the experiments on European eel Anguilla Anguilla swimming in a hydrodynamic re-circulating tank with the velocity flow fixed at 0.2 m/s. We find that the undulating shape of overall eel body changes when it swims slantwise from the flow direction, by comparison to axial undulation shape. We examine this kinematics and we propose a general equation describing the lateral position of undulation body taking into account the direction of the eel-s swimming.

Keywords: Undulatory swimming, maneuver, eel Anguilla Anguilla, biomechanic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
57 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: Computed force control method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
56 Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator

Authors: A. Omran, G. El-Bayiumi, M. Bayoumi, A. Kassem

Abstract:

Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.

Keywords: Stewart kinematics, Stewart dynamics, task space control, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
55 Individual Actuators of a Car-Like Robot with Back Trailer

Authors: Tarek M. Nazih El-Derini, Ahmed K. El-Shenawy

Abstract:

This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T).The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup.

Keywords: Kinematics, Modeling, Wheeled Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
54 Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller

Authors: J. G. Batista, L. J. de Bessa Neto, M. A. F. B. Lima, J. R. Leite, J. I. de Andrade Nunes

Abstract:

The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.

Keywords: Direct and inverse kinematics, Denavit-Hartenberg, microcontrollers, robotic manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
53 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
52 The Biomechanics of Cycling with a Transtibial Prosthesis: A Case Study of a Professional Cyclist

Authors: D. Koutny, D. Palousek, P. Stoklasek, J. Rosicky, L. Tepla, M. Prochazkova, Z. Svoboda, P. Krejci

Abstract:

The article deals with biomechanics of cyclist with unilateral transtibial amputation. Transtibial amputation completely removes ankle and part of muscles of a lower leg which are responsible for production of force during pedaling and causes significant geometric and power asymmetry between the limbs during cycling movement. The primary goal of this work is to assess the effects of length adjustment of the crank on the kinematics and muscle activity of cyclist. The paper presents experimental work, which aims to find a suitable ratio of the length of kinematic components to improve overall athletic performance. The study presents the results of the kinematic analysis of the cycling movement with different crank length realized by tracking camera system together with the results of muscle activity measurements captured by electromyography and measurement of forces in the cranks by strain gauges.

Keywords: Amputation, electromyography, kinematics of cycling, leg asymmetry, motion capture, transtibial prosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3578
51 Lunar Rover Virtual Simulation System with Autonomous Navigation

Authors: Bao Jinsong, Hu Xiaofeng, Wang Wei, Yu Dili, Jin Ye

Abstract:

The paper researched and presented a virtual simulation system based on a full-digital lunar terrain, integrated with kinematics and dynamics module as well as autonomous navigation simulation module. The system simulation models are established. Enabling technologies such as digital lunar surface module, kinematics and dynamics simulation, Autonomous navigation are investigated. A prototype system for lunar rover locomotion simulation is developed based on these technologies. Autonomous navigation is a key echnology in lunar rover system, but rarely involved in virtual simulation system. An autonomous navigation simulation module have been integrated in this prototype system, which was proved by the simulation results that the synthetic simulation and visualizing analysis system are established in the system, and the system can provide efficient support for research on the autonomous navigation of lunar rover.

Keywords: Lunar rover, virtual simulation, autonomous navigation, full-digital lunar terrain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
50 Acceleration Analysis of a Rotating Body

Authors: R. Usubamatov

Abstract:

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Keywords: acceleration analysis, kinematics of mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
49 Dynamic Modeling of Underwater Manipulator and Its Simulation

Authors: Ruiheng Li, Amir Parsa Anvar, Amir M. Anvar, Tien-Fu Lu

Abstract:

High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work

Keywords: Manipulator System, Robot, AUV, Denavit- Hartenberg method Lagrange theorem, MALTAB, ADAMS, Direct and Inverse Kinematics, Dynamics, PD Control-law, Interlink Force Sensing ResistorTM, intelligent artificial skin system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3499
48 Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot

Authors: G. Shanmugasundar, R. Sivaramakrishnan, S. Venugopal

Abstract:

Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.

Keywords: Robot kinematics, screw jack mechanisms, Denavit-Hartenberg approach, universal joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
47 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut

Abstract:

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
46 Lower energy Gait Pattern Generation in 5-Link Biped Robot Using Image Processing

Authors: Byounghyun Kim, Youngjoon Han, Hernsoo Hahn

Abstract:

The purpose of this study is to find natural gait of biped robot such as human being by analyzing the COG (Center Of Gravity) trajectory of human being's gait. It is discovered that human beings gait naturally maintain the stability and use the minimum energy. This paper intends to find the natural gait pattern of biped robot using the minimum energy as well as maintaining the stability by analyzing the human's gait pattern that is measured from gait image on the sagittal plane and COG trajectory on the frontal plane. It is not possible to apply the torques of human's articulation to those of biped robot's because they have different degrees of freedom. Nonetheless, human and 5-link biped robots are similar in kinematics. For this, we generate gait pattern of the 5-link biped robot by using the GA algorithm of adaptation gait pattern which utilize the human's ZMP (Zero Moment Point) and torque of all articulation that are measured from human's gait pattern. The algorithm proposed creates biped robot's fluent gait pattern as that of human being's and to minimize energy consumption because the gait pattern of the 5-link biped robot model is modeled after consideration about the torque of human's each articulation on the sagittal plane and ZMP trajectory on the frontal plane. This paper demonstrate that the algorithm proposed is superior by evaluating 2 kinds of the 5-link biped robot applied to each gait patterns generated both in the general way using inverse kinematics and in the special way in which by considering visuality and efficiency.

Keywords: 5-link biped robot, gait pattern, COG (Center OfGravity), ZMP (Zero Moment Point).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
45 Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

Authors: Amon Tunwannarux, Supanunt Tunwannarux

Abstract:

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Keywords: Multi-joint, mechanical arm, inverse kinematics, rescue robot, GUI control program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
44 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Authors: Yao Jie, Yeo Khoon Seng

Abstract:

In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.

Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
43 Kinematic and Dynamic Analysis of a Lower Limb Exoskeleton

Authors: Tawakal Hasnain Baluch, Adnan Masood, Javaid Iqbal, Umer Izhar, Umar Shahbaz Khan

Abstract:

This paper will provide the kinematic and dynamic analysis of a lower limb exoskeleton. The forward and inverse kinematics of proposed exoskeleton is performed using Denevit and Hartenberg method. The torques required for the actuators will be calculated using Lagrangian formulation technique. This research can be used to design the control of the proposed exoskeleton.

Keywords: Dynamic Analysis, Exoskeleton, Kinematic Analysis, Lower Limb, Rehabilitation Robotics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4596