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Abstract—The aim of this work is to present a multi-objective
optimization method to find maximum efficiency kinematics for a
flapping wing unmanned aerial vehicle. We restrained our study
to rectangular wings with the same profile along the span and to
harmonic dihedral motion. It is assumed that the birdlike aerial
vehicle (whose span and surface area were fixed respectively to
1m and 0.15m2) is in horizontal mechanically balanced motion
at fixed speed. We used two flight physics models to describe
the vehicle aerodynamic performances, namely DeLaurier’s model,
which has been used in many studies dealing with flapping wings,
and the model proposed by Dae-Kwan et al. Then, a constrained
multi-objective optimization of the propulsive efficiency is performed
using a recent evolutionary multi-objective algorithm called ǫ-MOEA.
Firstly, we show that feasible solutions (i.e. solutions that fulfil the
imposed constraints) can be obtained using Dae-Kwan et al.’s model.
Secondly, we highlight that a single objective optimization approach
(weighted sum method for example) can also give optimal solutions
as good as the multi-objective one which nevertheless offers the
advantage of directly generating the set of the best trade-offs. Finally,
we show that the DeLaurier’s model does not yield feasible solutions.

Keywords—Flight physics, evolutionary algorithm, optimization,
Pareto surface.

I. INTRODUCTION

N
OWADAYS, UAVs (Unmanned aerial vehicles) are

mainly used in the military field for observation and

target destruction. People are also using them for civil appli-

cations like surveillance of road traffic, fire prevention, works

of engineering inspection and more generally any intervention

in dangerous or difficult to access places.

Recently, the research in this field has focused on a new

dimension : the miniaturization. The goal is to conceive an

autonomous flying vehicle small enough to be carried and

operated by a single man. But this tendency is colliding

with the performance problems encountered at low-Reynolds

numbers. This has stimulated many scientists and engineers

to consider non classical solutions. Some of them, inspired by

nature, started to think of conceiving vehicles which fly like

birds and insects by flapping their wings. Then, the concept of

flapping wings UAVs appeared. This kind of UAVs has many

advantages compared to the existing ones. Firstly, they can fly

with suppleness at low-speed without the loss in performance

which impacts fixed wings UAVs. Secondly, their acoustic
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signature is much more diffuse than the UAVs with rotating

surfaces (helicopter-like UAVs), which makes them difficult to

spot.

Among the prototypes developed in recent times, we can cite

the entomopter of GeorgiaTech [19], Microbat of Caltech [14],

Micromechanical flying insect [11] and the Project Ornithopter

of DeLaurier [20], [16], [13]. In France, we can cite the PRF

REMANTA [8], the ROBUR project [7] and the OVMI project

[5].

Within each of these projects, the scientists tried to optimize

the design of the aerial vehicle to increase its aerodynamic

efficiency (lift, lift to drag ratio, power consumption, etc.).

Actually, at the present time, an important part of the re-

search and development community works on conceiving

the most energy-efficient airfoil adaptation and wing motion

technologies capable of providing the required aerodynamic

performance for an UAV flight. We can refer to the recent

work of Langelaan [4] dealing with trajectory optimization

based on a simple flight physics model for soaring or the

work of Zaeem et al. [6] about the design and optimization of

a flapping wing mechanism for MAVs (Micro Air Vehicles).

We can also cite the work of De Margerie et al. [3] that applies

artificial evolution to optimize the morphology and kinematics

of a flapping wing mini-UAV or the work of Berman et al.

[1], where it is shown that the hovering kinematics for some

insects minimize energy consumption. All of these works

excepted De Margerie et al.’s, which does not make use of

a tested model for flapping wings, use a single objective

approach to solve the problem. In this work we focus our

attention on kinematics optimization on a simple geomet-

rical birdlike model (rectangular wings) in flapping motion

(harmonic dihedral motion). This problem involves multiple

objectives. We used an evolutionary algorithm to perform

a multi-objective constrained optimization, demonstrated that

there is a compatibility with the single objective approach

(weighted sum method for example) and that the DeLaurier’s

model is not compatible with the optimization program.

II. PROBLEM STATEMENT

We consider a simple birdlike model with rectangular wings

of 1 meter span (both wings). We use a Liebeck LPT 110

A profile along the span. The flapping motion, considered

as symmetric, can be decomposed into three basic motions,

dihedral motion, sweep motion and twist motion also called

pitch.

In our case, we are interested to consider only the dihedral
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Fig. 1. The flapping motion can be decomposed into three basic motions :
sweep, dihedral and twist

motion. The dihedral angle β is given by

β = dβcos(2πfβt+ φβ) (1)

where dβ, fβ , φβ and t are respectively the amplitude of
dihedral motion, the frequency of the dihedral motion, the

phase of this motion and the time. Moreover we consider that

the birdlike vehicle is in horizontal flight at a given velocity

Vc.

Fig. 2. The bird-like vehicle is in horizontal flight at a given speed

The motion of the wings can be decomposed into down-

stroke (downward motion of the wing) and upstroke (upward

motion of the wing). The composition of this motion with the

body motion (horizontal motion) gives a sinusoidal trajectory

for the wingtips in an external referential as the motion of

the wings is harmonic. The aerodynamic force exerted on the

wings can be decomposed into lift and thrust. The surrounding

fluid exerts also a drag force on the rest of the body.

Fig. 3. The movement of the wings in an external referential

Many recent studies [18], [10], [22] have tried to identify

and understand the high propulsive efficiencies encountered

for example in nature (insects, birds, fishs) and others to find

optimal designs maximizing the propulsive efficiency of UAVs

[23], [22] .

It is the goal of this work to investigate a set of optimal

kinematics that maximize propulsive efficiency in horizontal

flight with prescribed velocity.

III. MATERIALS AND METHODS

A. Flight physics models

The physics of the flapping flight is described by two flight

physics models used separately.

1) The model of DeLaurier : Here is a description of

DeLaurier’s model. One can find all the necessary details

about the original model in DeLaurier’s paper [20]. DeLaurier

presented an unsteady aerodynamic model for flapping wing

flight based on a modified strip theory. Unsteady vortex-wake

effects, partial leading edge suction and post stall behavior are

accounted for as well as friction drag and camber.

Furthermore, this model assumes a continuous sinusoidal

motion, with equal times between upstroke and downstroke, a

high aspect ratio for the wing, an invariable finite span and a

low resultant angle of attack.

The relevant variables for each section are presented as follows

(Fig. 4) . For each section, the relative angle of attack (α) at the

Fig. 4. Wing section aerodynamic forces and motion variables

3
4 -chord location due to wing’s motion and the flow’s relative

velocity (V ) at 1
4 -chord location are given by :

α =

[
ḣ cos(θ − θ̄a) + 3

4cθ̇ + U(θ − θ̄)
U

]
,

V 2
x =

[
U cos(θ) − ḣ sin(θ − θ̄a)

]2

,

V 2
n =

[
U(α′ + θ̄) − 1

2
cθ̇

]2

,

V =
√
V 2

x + V 2
n ,

with U the mean-stream velocity, ḣ the plunging velocity
(perpendicular to the flapping axis), θ the pitch angle, c the
chord and θ̄ = θ̄w + θ̄a the mean pitch angle. Now assuming

a sinusoidal motion, α′ is given by

α′ =
AR

2 +AR

[
F ′(k)α+

c

2U
G′(k)
k

α̇

]
− w0

U
, (2)

with AR, the wing’s aspect ratio, w0
U the downwash which can

be approximated by
2(α0+θ̄)
2+AR , k the reduced frequency given
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by ωc
2U (ω is the pulsation) and

F ′(k) = 1 − C1k
2

(k2 + C2
2 )
,

G′(k) = − C1C2

(k2 + C2
2 )
,

C1 =
0.5AR

(2.32 +AR)
,

C2 = 0.181 +
0.772
AR

.

As the wing’s aspect ratio is assumed to be large enough, the

flow over each section is assumed to be chord-wise. Thus the

section’s circulatory force (dNc) acting at
1
4 -chord location is

given by

dNc = ρUV π(α′ + α0 + θ̄)cdy,

where ρ is the volumic mass of the fluid. An additional normal
force (dNa) acting at the mid-chord, due to apparent mass

effect is given by

dNa =
ρπc2

4
v̇2dy,

where v̇2 = Uα̇− 1
4cθ̈.

Therefore, the section’s total attached flow normal force (dN )
is

dN = dNa + dNc.

On the other hand, the chord-wise forces due to camber (dDc),

leading edge suction (dTs) and friction drag (dDf ) are given

by

dDc = −2πα0(α′ + θ̄)
ρUV

2
cdy,

dTs = ηs2π(α′ + θ̄ − 1
4
cθ̇

U
)2
ρUV

2
cdy,

dDf = (Cd)f
ρV 2

x

2
cdy,

where (Cd)f is the friction drag coefficient (to be modeled

against the Reynolds number). We adopted the same formula

as DeLaurier which reads as follows (Cd)f = 0.89
[log(Re)]2.58

with Re = V c
ν the chord based Reynolds number with ν the

kinematic viscosity of the surrounding air is 15 10−6m2.s−1.

Thus, the total chord-wise force dFx is

dFx = dTs − dDc − dDf .

Post stall behavior is locally modeled by using a stall criterion.

The stall occurs when

α′ + θ̄ − 3
4
(
cθ̇

U
) ≥ (αstall)max. (3)

where (αstall)max is the static stall angle of incidence.

Then it is assumed that all the chord-wise forces are zero

(dDc, dTs, dDf = 0) and the normal force (dN ) is given by

dN = (dNc)sep + (dNa)sep,

Vn = ḣ cos(θ − θ̄a) +
1
2
cθ̇ + U sin(θ),

V̂ = (V 2
x + V 2

n )
1
2 ,

(dNc)sep = (Cd)cf
ρV̂ Vn

2
cdy,

(dNa)sep =
1
2
dNa,

with (Cd)cf the post stall normal force coefficient equal to

1.98.
The equations for vertical (dL) and horizontal (dT ) forces are
as follows :

dL = dN cos(θ) + dFx sin(θ),
dT = dFx cos(θ) − dN sin(θ).

On integration along the span we get the vertical (L) and
horizontal (T ) forces

L = 2
∫ b

2

0

cos(β)dL,

T = 2
∫ b

2

0

dD,

with b the span (we consider the two wings). Then the averages
are obtained by taking the mean in time over one period which

gives

L̄ =
ω

2π

∫ 2π
ω

0

L(t) dt,

T̄ =
ω

2π

∫ 2π
ω

0

T (t) dt.

It is worthwhile mentioning that one may also compute the

instantaneous power required to move the section against its

aerodynamic loads and the aerodynamic moment about the

elastic axis. For attached flow one may note the following

formulas :

dPin = dFxḣ sin(θ − θ̄a) + dN

[
ḣ cos(θ − θ̄a) +

1
4
cθ̇

]

+ dNa

[
1
4
cθ̇

]
− dMacθ̇ − dMaθ̇,

dMaero = dMac + dMa − dNa

[
1
4
c− e

]
− dNc

[
1
2
c− e

]
,

dMac =
1
2
ρU2Cmacc

2dy,

dMa = −
[

1
16
ρπc3θ̇U +

1
128

ρπc4θ̈

]
.

For stalled flow we have

(dPin)sep = dNsep

[
ḣ cos(θ − θ̄a) +

1
2
cθ̇

]
,

(dMaero)sep = −((dNc)sep + (dNa)sep)
[
1
2
c− e

]
,

where e is the distance between the leading edge and the
elastic axis (function of the span location). Similarly, we
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can also derive expressions for the span integrated and time

averaged moment about the elastic axis as follows

P̄in =
ω

2π

∫ 2π
ω

0

∫ b
2

0

dPin dt,

M̄aero =
ω

2π

∫ 2π
ω

0

∫ b
2

0

dMaero dt.

Finally, we can define the average propulsive efficiency as

follows

η̄ =
T̄U

P̄in
.

2) The Dae-Kwan et al.’s model : Now we present the

model of Dae-Kwan et al. as implemented within our code.

This model is a modified version of DeLaurier’s model for

high angles of attack [2]. It includes a dynamic stall model.

Moreover, it has been validated against experiments of oscil-

latory flat plate motion in pitch and plunge [2].

If we use the same notations as in section (III-A1) the model

can be described as follows. The flow’s relative velocity (V )
at 1

4 -chord location for each section is given by :

V 2
x =

[
U cos(θ) − ḣ sin(θ − θ̄a)

]2

,

V 2
n =

[
ḣ cos(θ − θ̄a) − w0 +

1
4
cθ̇ + U sin(θ)

]2

,

V =
√
V 2

x + V 2
n .

The angle of attack (γ) is given by

γ = tan−1

[
ḣ cos(θ − θ̄a) + 1

4cθ̇ + U sin(θ) − w0)

U cos(θ) − ḣ sin(θ − θ̄a)

]
.

The linearized angle of attack (α′ + θ̄) at the 1
4 -chord location

is given by

α′ =

[
ḣ cos(θ − θ̄a) + 3

4cθ̇ + U(θ − θ̄) − w0

U

]
,

α′ = α− w0

U
. (4)

One can notice that V is not linearized, which was not the
case in DeLaurier’s model. Furthermore, there is no use of

modified Theodorsen functions as can be seen from comparing

equations (4) and (2).

Fig. 5. The incidence correction adopted within Dae-Kwan et al. ’s model

The section’s representative vortex (dΓ) and the circulatory
aerodynamic force (dFc) are given by (Fig. 2) :

dΓ = Ucπ(α′ + α0 + θ̄),
dFc = ρV dΓdy.

Then the corrected form of the circulatory normal force (dNc)

is

dNc = dFc cos(γ).

An additional normal force (dNa) acting at the midchord, due

to apparent mass effect is given by

dNa =
ρπc2

4
v̇2dy,

where

v̇2 = ḧ cos(θ − θ̄a) − ḣθ̇ sin(θ − θ̄a) +
1
2
cθ̈ + Uθ̇ cos(θ).

Therefore the section’s total attached flow normal force (dN )
is

dN = dNa + dNc.

The chord-wise forces due to camber (dDc), leading edge

suction (dTs) and friction drag (dDf ) are given by

dDc = −2πα0(α′ + θ̄) cos(γ)
ρUV

2
cdy,

dDf = (Cd)f
ρV 2

x

2
cdy,

dT 1
s = (α′ + θ̄ − 1

4
cθ̇

U
) cos(γ),

dT 2
s = (α′ + α0 + θ̄) sin(γ),

dTs = ηs2π
[
(dT 1

s + dT 2
s )
ρUV

2
cdy

]
,

where Vx = U cos(θ) − ḣ sin(θ − θ̄a).
Thus, the total chord-wise force (dFx) is

dFx = dTs − dDc − dDf .

The post stall behavior is locally modeled (for each section)

by using a stall criterion. The stall occurs when

γ − 3
4

[
cθ̇

U

]
≥ (αstall)max,

which is the non linearized version of (3). Then it is assumed

that dDc = 0 and the other forces are given by

dN = (dNc)sep + (dNa)sep,

Vn = ḣ cos(θ − θ̄a) +
1
2
cθ̇ + U sin(θ),

V̂ = (V 2
x + V 2

n )
1
2 ,

(dNc)sep = (Cd)cf
ρV̂ Vn

2
cdy,

(dNa)sep =
1
2
dNa,

(dDf )sep = (Cd)stall
f

ρV 2
x

2
cdy,

(dTs)sep = ηstall
s 2π(α′ + θ̄ − 1

4
cθ̇

U
) cos(γ)

ρUV

2
cdy,

(dTs)sep accounts for the dynamic stall phenomena and con-

tributes to the normal force (dN ) (Fig. 3).
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Fig. 6. The modelisation of dynamic stall within Dae-Kwan et al.’s model

The constants ηstall
s and (Cd)stall

f were taken equal respec-

tively to 1.491 and 0.065. Now we can derive the equations
for vertical (dL) and horizontal (dT ) forces as follows :

dL = dN cos(θ) + dFx sin(θ),
dT = dFx cos(θ) − dN sin(θ).

On integration along the span we get the vertical (L) and
horizontal (T ) forces

L = 2
∫ b

2

0

cos(β)dL,

T = 2
∫ b

2

0

dD,

with β the dihedral angle which is a function of time and b
the span (we consider both wings).

Then the averages are obtained by taking the mean in time

over one period which gives

L̄ =
ω

2π

∫ 2π
ω

0

L(t)dt,

T̄ =
ω

2π

∫ 2π
ω

0

T (t)dt.

One may also compute the instantaneous power required

to move the section against its aerodynamic loads and the

aerodynamic moment about the elastic axis. For attached flow

it is given by

dPin = dFxḣ sin(θ − θ̄a) + dN

[
ḣ cos(θ − θ̄a) +

1
4
cθ̇

]

+ dNa

[
1
4
cθ̇

]
− dMacθ̇ − dMaaθ̇,

dMaero = dMac + dMa − dNa

[
1
4
c− e

]
− dNc

[
1
2
c− e

]
,

dMac =
1
2
ρU2Cmacc

2dy,

dMa = −
[

1
16
ρπc3θ̇U +

1
128

ρπc4θ̈

]
.

For stalled flow we have

(dPin)sep = dNsep

[
ḣ cos(θ − θ̄a) +

1
2
cθ̇

]
,

(dMaero)sep = − [(dNc)sep + (dNa)sep]
[
1
2
c− e

]
,

with e the distance between the leading edge and the elastic
axis. It is clear that e is a function of the span location. We

can also derive expressions for the span integrated and time

averaged moment about the elastic axis as follows

P̄in =
ω

2π

∫ 2π
ω

0

∫ b
2

0

dPin dt,

M̄aero =
ω

2π

∫ 2π
ω

0

∫ b
2

0

dMaero dt.

Finally we can define the average propulsive efficiency as

follows

η̄ =
T̄U

P̄in
.

B. Optimization : concepts and tools

1) Terminology : When dealing with an optimization prob-

lem, specific vocabulary is used. On its most general form a

multi-objective optimization problem reads as follows

max fm(x ) ,m = 1...M, (5)

gj ≥ 0, j = 1...K,
hj = 0, j = 1...L,

xl
i ≤ xi ≤ xu

i , i = 1...n,

where M is the number of objectives, K the number of

inequality constraints (represented by the functions gj) and

L the number of equality constraints (represented by the
functions hj).

The vector x = (x1, ..., xn) is the n decision variables vector.
The n numbers xl

i and x
u
i are respectively the lower and upper

bounds of the variable xi. These bounds define the search

space or decision space, D. What is commonly called solution

is an element of the decison space. A solution will be feasible

if it satisfies the constraints. The group of feasible solutions

is called the feasible space, S.

2) Dominance and Pareto optimality : A solution xi of the

problem (5) is said to dominate another solution xj , if the

following conditions are satisfied :

• The solution xi is not worse than xj with respect to all

objectives which means that fm(xi) ≥ fm(xj) ∀m ∈
{1...M}.

• The solution xi is strictly better than xj with respect to

at least one objective which means that ∃m ∈ {1...M}
such that fm(xi) > fm(xj)

The global Pareto set of the multi-objective optimization

problem (5) is composed of the feasible solutions that are

not dominated by any other solution of the feasible space.

The image of the Pareto set in the objectives’ space is called

Pareto surface or Pareto front for a bi-objective problem (Fig.

7).

3) Search procedures of the non-dominated set : Most op-

timization problems involve numerous objectives in practice.

The standard approach is to transform them into a single-

objective by using a weighted sum of the relevant objectives

as follows (6) :

Fw(x) =
M∑

m=1

wmfm(x), (6)
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Fig. 7. Pareto front, dominated and non dominated solutions

where the weights wm ≥ 0 verify
∑M

m=1 wm = 1. Then, to
solve the problem (5), the following optimization program is

resolved :

maxx∈S Fw(x). (7)

The solution of the problem (7) is included in the Pareto

surface. It is given by the tangency points between the

Pareto surface and the hyperplan whose normal is the vector

w = (w1, ..., wM ). Then by changing the values of the weights
we can get the whole front if it is convex [15].

Fig. 8. Example of three different solutions obtained in the case of three
different weighted sums with a convex Pareto front

If the Pareto surface is an hyperplan in the objectives’

space then the two approaches are equivalent and one will

prefer the single-objective approach for its simplicity. But if

the Pareto surface is concave, or changes curvature then the

single-objective method will be unable to get all the Pareto

surface points by changing the weights [15].

On the contrary, multiobjective optimization procedures

produce a set of trade-offs, among which a higher-level

algorithm, or the user, may select the preferred one

without the need to a priori assign relative weights to

these alternatives. One of the most interesting properties of

evolutionary optimization methods is their ability to deal with

multiple objectives at once. Numerous algorithms have been

proposed [12], to generate the set of such trade-offs. Most

of them rely on the concept of domination and generate the

so-called Pareto surface.

In this work to generate globally Pareto-optimal sets we used

the ǫ-MOEA algorithm [9] for its efficiency and robustness.
It is based on the ǫ-dominance concept, where ǫ controls

the allowable difference between two values of the vector of

objective functions, it may be considered as the resolution in

the objectives’ space. Moreover it is a steady state MOEA

(Multi Objective Evolutionary Algorithm), that emphasizes

non-dominated solutions by using an elitist approach.

4) Optimization program : To begin with, we need to state

some relevant variables for our problem. In horizontal flight,

with symmetrical flapping motion and prescribed forward

velocity we have the following equalities :

L = W, (8)

D = T , (9)

M = 0,

where L is the lift, W is the weight, T is the thrust, D the
body drag and M the pitching moment about the elastic

axis of the wing. These are the equations to satisfy in this case.

Following empirical relations established for birds [17],

we compute an average mass M (0.69 kg) for the whole
device (wings+fuselage+appendages+equipments) and an

average surface area S of the wings (0.15m2). Provided (8),

this allows us to determine the necessary lift coefficient Czc

to ensure sustentation for a given cruise velocity as follows :

Czc =
2Mg

ρSV 2
c

,

where g (10.0 m.s−2) is the acceleration of gravity and ρ
(1.295 kg.m−3) is the volumic mass of air. One can find the

values of Czc in table (IV). The empirical relations provided

by [17], allow us to estimate maximum and minimum values

for mass (Mmax and Mmin) and cruise velocity (Vmax

and Vmin) for a birdlike vehicle with the prescribed span.

Then, using (8), we can determine maximum (Czmax) and

minimum (Czmin) values for the mean lift coefficient.

With an estimation for birds of the mean body drag

(Cdc) [17], we can compute also maximum (Cdmax) and

minimum (Cdmin) values for the drag coefficient. Provided

(9), this gives us upper and lower bounds for the mean thrust

coefficient CT as well. One can find the values of mass

and frequencies in table (I) and the values of aerodynamical

parameters in (II).

Now, we are ready to deal with the optimization part.

The optimization variables are the kinematical parameters of

the dihedral motion given in (1). Then, we have

x1 = dβ,

x2 = fβ,

x3 = φβ .

The upper and lower bounds for the optimization variables are

defined as follows

xu = (
π

2
, fmax, π),

xl = (−π
2
, fmin,−π).
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One can find all the relevant values for xu and xl in table

(III).

We define then the following optimization program, called

(OP) which involves three objectives :

• Maximise the propulsive efficiency with Cdin ≤ CT ≤
Cdmax,

• Minimize the distance between the lift coefficient Cz and

Czc with

1) Czmin ≤ Cz ≤ Czmax,
2) Mmin−M

M ≤ Cz−Czc

Czc
≤ Mmax−M

M ,

• Minimize the absolute value of the pitch moment coeffi-
cient Cm.

5) The optimisation code : We used for optimization an

open source code, Sferes (Framework Enabling Research on

Evolution and Simulation) written in C++, developed by

Samuel Landau and Stéphane Doncieux [25]. It is a tool

dedicated to students, searchers or others interested in the

evolutionary algorithm experiments. Its goal is to provide a

generic tool maximizing code reuse and thus accelerating the

development of new algorithms by concentrating on the new

aspects. Moreover Sferes gathers an evolution framework with

a simulation framework. It can be used for multi or single

objective optimization. We implemented within the code a

module providing the value of the objectives and constraints

using the model of DeLaurier’s and Dae-Kwang et al.’s model.

IV. RESULTS AND DISCUSSION

A. General considerations

We solve the problem (OP) using Dae-Kwan et al.’s model

and the DeLaurier’s model with the bounds for optimization

parameters specified in table (III). We used an asymmetrical

function (Fig. 9), defined as follows, to scale our objectives.

ψ =
{ 1

x+1 if x > 0,
−1
x−1 − 1 otherwise.

This function was used to favour finding positive values of

x, which in our case (see (OP)) means finding propulsive
efficiencies (η̄) as close to 1.0 as possible, lift coefficients
(Cz) slightly superior to the targeted lift coefficient (Czc) and

pitching moment coefficients (Cm) slightly superior to zero.

We have penalized each criteria with a penalty function Π

Fig. 9. Function y = ψ(x) used to scale the objectives

using the Heaviside function H usually defined by

H(x) =
{

1 if x > 0,
0 otherwise.

The penalty function is defined as follows

Π = −H(η̄ − 1) −H(−η̄),
−H(CT − Cdmax),
−H(Cdmin − CT ),
−H(Cz − Czmax) −H(Czmin − Cz).

We have not included in the penalty function the constraint

on Cz−Czc

Czc
but we will take it into account by eliminating the

provided solutions that do not respect this constraint to finally

obtain the feasible set. Therefore the optimized objectives are

as follows:

• Maximize F1 = ψ(η̄ − 1) + 2Π − 2,
• Maximize F2 = ψ(Cz − Czc) + 2Π − 2,
• Maximize F3 = ψ(Cm) + 2Π − 2.
We can notice that when the penalty is zero, the objectives

take values between −3.0 and −1.0, but if the penalty is not
zero then the objectives will take values inferior to −3.0.
Then solutions with a zero penalty dominate obviously other

solutions with non zero penalty.

All the results presented here are validated by multiple

runs of the algorithm. We stop the algorithm when no visual

change is noticed on the obtained sets within a period of 30
generations. The Pareto surfaces, in the objectives’ space,

are obtained by aggregating the sets generated by each of

at least 7 runs and making a non-domination sort on the
resulting set. We used the Simpson formula [21] to compute

space integrals with 50 points and classical averaging to
compute means in time with 100 points. We also used a
value of 0.025 for Cmref

and a set of three forward velocities

(Vc = 6m/s, Vc = 10m/s, Vc = 14m/s).

For the graphical representations, we define three

adimensionalized parameters as follows :

DC∗
z =

Cz − Czc

Czc
,

Eta∗ = η̄,

C∗
m = Cm/Cmref

.

DC∗
z can be interpreted as the ratio of the difference of the

mass that can be taken by the aerial vehicle and M (0.69kg)

divided by M . As we have imposed a maximal mass of 5kg
and a minimal mass of 0.1kg, only the solutions with a DC∗

z

inferior to DCmax
z = 6.5 and superior to DCmin

z = −0.85
are feasible.

B. Dae-Kwan et al.’s model

1) The Pareto surfaces : The evolution process has found

non plane Pareto surfaces for the three forward velocities,

with low values of η̄, between 0.02 and 0.18. We have
choosen to represent the results using the scatter-plot matrix

method (Fig. 10).

In the plane (Eta∗, Cm∗) (Fig. 10 (b)), we can notice that
all the three sets collapse into a single curve, which shows

that there is no influence of the forward velocity (within the
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Fig. 10. Scatter-plot matrix representation for the three Pareto surfaces

choosen range of velocities) on the distribution of the optimal

solutions in this plane. Indeed, we can see that an increase

in the propulsive effficiency is associated with an increase in

the absolute value of the pitching moment which points out

that efficient solutions need to be stabilized in pitch by the

addition of a device (a tail for example).

Moreover, in the plane (Eta∗, DC∗
z ) (Fig. 10 (a)), we can

see an obvious effect of the velocity. Indeed, if we consider

a given propulsive efficiency, an increase in the forward

velocity leads to an increase of the DC∗
z . That means that,

for this propulsive efficiency, the higher the velocity (within

the choosen velocity range of course) the more additional

mass the vehicle can take, which is quite compatible with

the common physical sense. But we can also notice that

the highest propulsive efficiency is obtained for the lowest

velocity (Vc = 6m/s), which is quite normal because of the
constraint on the DC∗

z .

Finally, in the plane (DC∗
z , Cm

∗) (Fig. 10 (c)), we can see
that for a given pitching moment an increase of the velocity

increases the DC∗
z and that the greatest value of the absolute

value for the pitching moment is obtained for the lowest

velocity, which is quite normal because of the constraint on

the DC∗
z . We have also included a representation of the three

Pareto surfaces (Fig. 11)

As said before the solutions who have the highest propulsive

efficiency are in the Pareto surface obtained at Vc = 6m/s
(Fig. 10). If we take a closer look at these solutions, we can

notice that they are not stabilized in pitch (absolute value of

Cm∗ is not zero) and that they need an additional device to
be stable in pitch (Fig. 12). Furthermore, we can see that

they can take additional mass at this speed as the DC∗
z takes

positive values.

2) The optimal parameters : Now, we are going to take

a look at the optimal parameters of the dihedral harmonic

motion (1). We have choosen to adopt a scatter-plot matrix

representation as in section IV-B1.
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Fig. 12. Scatter-plot matrix representation for the most efficient solutions

In the plane (dβ, fβ) (Fig. 13 (a)), we can see that the
distribution of points is symetrical with regard to the y axis.

This is due to the choice of the optimization interval, which

can be restricted to its half (in the comments, we will just

consider the part with positive dihedral amplitude).

In addition to that, optimal frequencies (fβ) and dihedral

amplitudes (dβ) lie on a specific region of the plane
delimited by a vertical axis of maximum dihedral amplitude,

a horizontal axis of maximum frequency and a parabolic-like

curve (there are two parabolic-like curves for the lowest

velocity (Vc = 6m/s). It is worthwhile mentioning that
the minima of the optimal set of frequencies and dihedral

amplitudes are greater than the minimal value of the

optimization interval, which means that all the frequencies

and dihedral amplitudes within the optimization interval are

not optimal parameters, then there is a ”preference” for the

frequencies higher than 3.5 Hz and the dihedral amplitudes
higher than 0.4 rad for Vc = 6m/s for example.
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Fig. 13. Scatter-plot matrix representation for the optimal parameters of the
three Pareto surfaces

Furthermore, we can see that there is a trade-off between

frequency and dihedral amplitude selection for optimality.

If the frequency is high, the dihedral amplitude is low and

vice-versa. The velocity does not affect this ”equilibrium” but

increases the minimal frequencies and dihedral amplitudes

and shrinks the points cloud of optimal parameters. In the

planes (dβ, φβ), (fβ , φβ) (Fig. 13 (b) and (c)), we can see
that the phase of the dihedral motion is not a key parameter

as the optimization interval choosen for the phase (φβ) is

uniformely populated.

Finally, we can have a look at the optimal parameters for the

most efficient solutions (Fig. 14)
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Fig. 14. Scatter-plot matrix representation for the optimal parameters of the
most efficient solutions

3) Single objective computation : We have also performed a

single objective computation (for the three forward velocities)

by agregating the three objectives with equal weights (6,7).

We have obtained feasible solutions that were not dominated

by the solutions of the multiobjective computation for Vc =
6m/s (Fig. 15), Vc = 10m/s (Fig. 16) and Vc = 14m/s

(Fig. 17). One can think that our problem can be solved by
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Fig. 15. Scatter-plot matrix representation of multiobjective and single
objective optimal solutions for Vc = 6m/s
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Fig. 16. Scatter-plot matrix representation of multiobjective and single
objective optimal solutions for Vc = 10m/s

just using a single objective approach. It is not totally true.

The single objective approach can give some feasible non-

dominated solutions but it does not give access to the whole

set of possible trade-offs (only if the Pareto surface is convex,

which cannot be known in advance) among which the user

can choose his solution. On the contrary, using multi-objective

procedures offer the advantage of directly generating the set

of the best trade-offs and then give the opportunity to have at

once more choices and more insights in the structure of the

problem.

C. DeLaurier’s model

We performed the same optimization process with the De-

Laurier’s model. But the obtained sets do not contain feasible

solutions. Indeed we can easily see (Fig. 18, Fig. 19) that

the penalty (see IV-A) is not zero, because the objectives

take values inferior to −3.0, then the solutions provided by
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Fig. 17. Scatter-plot matrix representation of multiobjective and single
objective optimal solutions for Vc = 14m/s

the algorithm are clearly not feasible for Vc = 10m/s and
Vc = 14m/s.
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Fig. 18. Infeasible solutions obtained with DeLaurier’s model for Vc =
10m/s

For Vc = 6m/s, the objectives take values between −3.0
and −1.0 (Fig. 20) but when we compute the Pareto surfaces
into the physical space (Eta∗, DCz∗, Cm∗) we can easily
see that the constraint on DC∗

z (DC
∗
z greater than DC

min
z ) is

not respected (Fig. 21), which means that the obtained set of

solutions is not feasible.

We can then conclude that the DeLaurier model is not

compatible with the optimization program (OP) defined before.

V. CONCLUSION

In conclusion, we can say that we have performed a con-

strained multiobjective optimization to find optimal kinematics

maximizing propulsive efficiency for a simplified birdlike

aerial vehicle in horizontal motion at given speed. We used

two flight physics models, Dae-Kwan et al. ’s model and

DeLaurier’s model to describe the physics of the flapping wing

−4.34

−4.32

−4.3

−4.28

−4.26

−4.24

−4.22

−4.2

−4.32

−4.31

−4.3

−4.29

−4.28

−4.27

−4.26

−4.25

−4.24

−4.23

−3.008

−3.007

−3.006

−3.005

−3.004

−3.003

−3.002

−3.001

−3

−2.999

F1
F2

F
3

Vc = 14 m/s

Fig. 19. Infeasible solutions obtained with DeLaurier’s model for Vc =
14m/s

−2.4265

−2.426

−2.4255

−2.425

−2.4245

−2.424

−2.4235

−2.423

−2.66

−2.655

−2.65

−2.645

−2.64

−2.635

−2.63

−2.31

−2.3

−2.29

−2.28

−2.27

−2.26

−2.25

−2.24

−2.23

−2.22

F1
F2

F
3

Vc = 6 m/s

Fig. 20. Solutions obtained with DeLaurier’s model for Vc = 6m/s

0.256

0.258

0.26

0.262

0.264

0.266

0.268

0.27

−0.97

−0.96

−0.95

−0.94

−0.93

−0.92

−0.91

−0.9

−0.89

−0.88

−18

−17

−16

−15

−14

−13

−12

−11

Eta*
DCz*

C
m

*

Vc = 6 m/s

Fig. 21. Infeasible solutions obtained with DeLaurier’s model for Vc =
6m/s

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:2, No:11, 2008 

1206International Scholarly and Scientific Research & Innovation 2(11) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
11

, 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
55

96
.p

df



flight and evolutionary algorithms to perform the multiobjec-

tive constrained optimization.

In the case of Dae-Kwan et al. ’s model Pareto surfaces were

found. All the obtained solutions were not balanced in pitch,

which means that they do need an additional device (a tail

for example) to be balanced. A quick look at the optimal

parameters distribution showed the existence of a trade-off

between frequency and dihedral amplitude (the higher the

frequency was, the lower the dihedral amplitude). The study

of the change of the Pareto surfaces with the advance velocity

allowed us to determine the velocity which gives the higher

propulsive efficiency. In this case it is the lowest velocity

(Vc = 6m/s).
We also launched a single objective computation a found

feasible solutions that were not dominated by the multiobjec-

tive solutions. We have compared multi and single objective

evolutionary algorithms. Both yields similar results, but multi-

objective algorithms offer the advantage of directly generating

the set of the best trade-offs between the different criteria we

used for optimization instead of a single solution. Although

in our experiments, the solutions generated by single objec-

tive optimization were as efficient as the one generated by

multi-objective optimization, the Pareto surface gave us more

insights on the structure of the search space and, consequently,

on the flight models we compare and on the flight dynamics.

Finally, the model proposed by DeLaurier did not yield feasi-

ble solutions, which allows us to say that it is not compatible

with the optimization program (OP).

VI. TABLES

TABLE I
MASS AND FREQUENCY VALUES

Mmax (kg) Mmin (kg) fmax(Hz) fmin(Hz)

5.0 0.1 10.0 0.0

TABLE II
AERODYNAMIC PARAMETERS VALUES

Vmax(m.s−1) Vmin(m.s−1) Czmax Czmin Cdmax Cdmin

30.00 6.00 14.3 0.01 9.92 0.10

TABLE III
OPTIMIZATION BOUNDS FOR THE KINEMATIC PARAMETERS FOR THE

DIHEDRAL MOTION

dβ(rad) fβ(rad.s−1) φβ(rad)
Max π

2
0 π

Min −

π
2

10 −π

TABLE IV
Czc VALUES

Vc(m.s−1) 6 10 14
Czc 1.97 0.71 0.36
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