
Abstract—This paper compares the heuristic Global Search 
Techniques; Genetic Algorithm, Particle Swarm Optimization, 
Simulated Annealing, Generalized Pattern Search, genetic algorithm  
hybridized with Nelder–Mead and Generalized pattern search  
technique for tuning of fuzzy PID controller for Puma 560. Since the 
actual control is in joint space ,inverse kinematics is used to generate 
various joint angles correspoding to desired cartesian space 
trajectory. Efficient dynamics and kinematics are modeled on Matlab 
which takes very less simulation time. Performances of all the tuning 
methods with and without disturbance are compared in terms of ITSE 
in joint space and ISE in cartesian space for spiral trajectory tracking. 
Genetic Algorithm hybridized with Generalized Pattern Search is 
showing best performance. 

Keywords—Controller tuning, Fuzzy Control, Genetic 
Algorithm, Heuristic search, Robot control. 

I. INTRODUCTION

HERE are wide variety of linear and nonlinear control 
methods for Robotic manipulator [1-2].PID controller is 

most commonly used controller in industry[3].Most of the PID 
controllers are model based which require precise knowledge 
of dynamic model including the values of physical parameters 
involved. Control methods used in robot arm applications 
however face the major difficulty resulting from the 
indetermination of actual dynamic parameters of robots.  
Identification of actual dynamics of robot manipulators is a 
challenging task because of friction characteristic and some of 
assumptions made while driving the mathematical equations 
of manipulators. Also, Robotic arms constantly move among 
widely separated regions of their workspace, Therefore no 
linearization valid for all regions can be found, hence, 
methods of linear control and those of local linearization and 
moving linearization are not well suited for the control 
problem of robotic arms. Fuzzy controllers are among the 
recent nonlinear and nonmodel based control methods [4-6]. 
Fuzzy controllers are able to make decision on the basis of 
linguistic information. Majority of fuzzy controllers during 
past decade are fuzzy PID controllers [7-8]. In designing the 
fuzzy logic controller, the major task is to determine fuzzy 
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rule base, membership function of input/output variables and 
input/output scaling factors. The membership functions and 
scaling factors affect the performance of fuzzy logic based 
controller. Therefore, tuning is needed for better performance 
of controller. Most of the conventional tuning methods are 
derivative driven and need continuous function. Genetic 
algorithm, Simulated Annealing and Particle Swarm 
Optimization are getting popular because of there    ability to 
finding global minima in both continuous and non-continuous 
domain. 

Genetic algorithms are stochastic search algorithm inspired 
by the principle of natural selection and natural genetics. 
Genetic Algorithm has considerably broadened the scope of 
optimization in engineering [9]. Simulated Annealing (SA) is 
motivated by an analogy to annealing in solids. The algorithm 
simulates the cooling process by gradually lowering the 
temperature of the system until it converges to a steady frozen 
state. SA’s major advantage over other methods is its ability to 
avoid becoming trapped at local minima.  The algorithm 
employs a random search, which not only accepts changes that 
decrease objective function, but also some changes that 
increase it with some probability [10-11]. Particle Swarm 
Optimization (PSO) is a population based stochastic 
optimization technique. The underlying motivation for 
development of PSO algorithm is social behavior of bird 
flocking or fish schooling. PSO is also an optimizer based on 
population. The system is initialized with a set of randomly 
generated potential solutions, and then performs the search for 
the optimum one iteratively.  PSO does not possess the 
crossover and mutation processes used in GAs, it finds the 
optimum solution by swarms following the best particle 
[12].Nelder and Mead nonlinear simplex algorithm is direct 
search method .This algorithm for nonlinear optimization is 
based on the concept of a simplex-a geometric object that is 
the convex hull of points not lying in the same hyper plane. 
The basic idea in the nonlinear simplex algorithm is that at 
each iteration a new point is generated in or near the current 
simplex. Usually, this new point replaces one of the current 
simplex vertices, yielding a new simplex. Generalized pattern 
search (GPS) algorithms are derivative free methods for the 
minimization of smooth functions, possibly with linear 
inequality constraints[13].Generalized pattern search 
algorithms for unconstrained or linearly constrained 
minimization generate a sequence of iterates with non-
increasing objective function values. Iteration is divided into 
two phases: an optional search and a local poll. Various 

Heuristic Search Algorithms for Tuning PUMA 
560 Fuzzy PID Controller 
Sufian Ashraf Mazhari, Surendra Kumar Member IEEE 

T

World Academy of Science, Engineering and Technology
International Journal of Electrical and Information Engineering

 Vol:2, No:9, 2008 

2024International Scholarly and Scientific Research & Innovation 2(9) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 I

nf
or

m
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
9,

 2
00

8 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/2
43

7.
pd

f



hybrid search methods have been proposed for engineering 
optimization problem[14-16].In this paper, tuning 
performance of GA,PSO, SA,GPS, GA-NM (GA hybridized 
with NM local search technique) and GA-GPS (GA 
hybridized with GPS) is being compared for tuning of Fuzzy 
PD+I controller . 

II. MANIPULATOR DYNAMICS AND KINEMATICS 
The dynamics of n link robotic manipulator is represented 

as

A B C g
2

( ) ( )[ ] ( )[ ] ( )
Where  

( )A       is the n n  kinetic energy  matrix, 
( )B       is the n n n( 1) / 2  matrix of coriolis torques,  

C( )      is the n nmatrix of centrifugal  torques  
g( )     is n 1 vector of gravity torques 

         is n 1 vector of acceleration 
         is n 1  vector of joint torque.  

The symbol [ ]  and 
2

[ ] are vector of velocity and 
squared velocity product. The dynamic parameters of Puma 
560 have been taken from [17]. Puma 560 joint actuators are 
DC servo motors with armature voltage as control input. The 
motor is connected to manipulator links through gear where 
the Robot dynamics appears as dynamic load. The dynamics 
of DC motor can be represented as  

a b
dIE E L RI
dt

 (1) 

b eE K N  (2) 

a eE K NI
Ls R

 (3) 

mK I  (4) 
Where Ea is the armature voltage, Eb the Back e.m.f, L and 

R are inductance and reactance of armature windings 
respectively, I is the armature current, N is gear ratio, Ke is the 
back e.m.f constant, Km is motor constant and  is load 
angular velocity. Actuator data of puma 560 Robot is taken 
from [18].The transformation between the joint space and the 
Cartesian space of the robot is very important since robots are 
controlled in the joint space, whereas tasks are defined and 
object manipulated in the Cartesian space. While modeling the 
kinematics of manipulator, arm singularity and configuration 
must be checked. The Forward and Inverse kinematic 
equations of puma 560 are taken from [19]. Control system 
diagram of Puma 560 is shown in Fig.1 which consists of 
desired Cartesian space trajectory T, inverse kinematics block 
I, Fuzzy PD+I controller, servo motor M, dynamics D and 
forward kinematics Block F. Simulink based simulation model 
of puma 560 dynamics  and complete  simulation diagram is 
shown in Fig.2 and Fig.3  . 

Fig. 1 Control system diagram of puma 560

Fig. 2 Simulink diagram of PUMA560 dynamics

Fig. 3 Simulink simulation diagram of PUMA560 

III.  FUZZY PD+I CONTROLLER

Fuzzy controller can be designed using parameters of crisp 
PID controller. Fuzzy PID controller is implemented as Fuzzy 
PD+I controller .The input to fuzzy controllers are error and 
error change. Matlab simulation diagram of fuzzy PD+I 
Controller is shown in Fig.4. 

Fig. 4 Matlab simulation diagram of Fuzzy PD+I
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Important step involved in designing fuzzy controller is rule 
base generation and input output gains setting. If d(k) is
desired joint angle  and (k) is actual output  angle at any 

sampling instant k , error e(k) , change in error e(k)  and 
integral error ie(k) are given as       

de(k) (k) (k)  (5) 

s

e(k) e(k )e(k)
T

1  (6) 

n

s
k

ie(k) e(k)T
1

 (7) 

For classical PD controller the controller output is given as  

p du(k) k e(k) T e(k)  (8) 

Where pk is gain of classical PD controller, dT  is derivative 
time constant and u (k) is control signal  

When action signal u(k) is equal to zero 

p dk e( k ) T e( k ) 0  (9) 

d

1e( k ) e( k )
T

 (10) 

From (10) it is clear that e(t)  directly depends upon dT . If 
state trajectory of the closed loop controlled system with PD 
controller for some constant PD value is plotted, it draws a 
sharp boundary between positive and negative control signals. 
This can be used to map rule base in discrete state space by 
taking the diagonal element of rule base as ZE. Rule base for 
fuzzy controller is given in Table I. Crisp PID controller 
parameters are used to initially set fuzzy input output gains. 
Input error scaling factor is eS , error change scaling factor is  

ceS   and output scaling factor is outS  the fuzzy controller 
output fu is given as 

f e ce ie outu S e(k) S e(k) S ie(k) S  (11) 

ce ie
f e out

e e

S S
u S S e(k) e(k) ie(k)

S S
 (12) 

Comparing (12) with the crisp PID controller output, values of 
scaling factors come out to be

e out pS S k ce
d

e

S
T

S
ie

e i

S
S T

1

If maximum probable error for any joint is maxe and input 

/output membership function universe is taken as [-1 1], the  

error scaling factor eS  can be set to 
maxe
1 .Error change and 

output scaling factor will be 

out p maxS k e d
ce

max

T
S

e ie
max i

S
e T

1

Since better trajectory always starts from the current position 
of joint angle, initial tracking angle is zero. Taking a worst 
condition error of 10 radians. Initial value of error scaling 
factor eS 0  is set to 0.1 and all other initial scaling factors 

0 0 0ce ie outS ,S ,S  are calculated using values of classical PID 

parameters taken from [20] as given in Table II. All these 
values are initial setting and fine tuning is always needed.

IV. TUNING METHODS

In tuning of fuzzy controller in case of nonlinear system 
like robot dynamics, upper and lower bound of search space is 
always needed because there are chances of getting singular 
solution if search space is not bounded. Search space lower 
(lb)  and upper (ub) bounds are taken as  

e ce ie out[S ,S ,S ,S ]
lb 0 0 0 0

3 e ce ie outub [S ,S ,S ,S ]0 0 0 03

The performance index for tuning is taken as 
n

j k

f (s) e (kj).kj
6

2 2

1 1

Where e(kj) is the system error at kth  sampling instant for 
thj joint. 

A. Genetic Algorithm 
GA acts as a controller which modifies the set of 

parameters 

of the jth  population which consist of p individual 
parameters of control system .This cycle is repeated until 
convergence criteria is met. In the evaluation step of GA, a 
simulation is performed for each fu .

B. Simulated Annealing 
This method simulates the annealing process in which a 

substance is heated above its melting temperature and then 
gradually cooled to produce the crystalline lattice, which 
minimizes its energy probability distribution. This crystalline 
lattice, composed of millions of atoms perfectly aligned, is a 
beautiful example of nature finding an optimal structure.  

1 1 1 1ej cej iej outjj p j p j p j p
S S S S

; ; ; ;
, , ,

TABLE I
RULE BASE FOR FUZZY CONTROL

\e e NB NM NS ZE PS PM PB 
PB ZE PS PM PB PB PB PB 
PM NS ZE PS PM PB PB PB 
PS NM NS ZE PS PM PB PB 
ZE NB NM NS ZE PS PM PB 
NS NB NB NM NS ZE PS PM 
NM NB NB NB NM NS ZE PS 
NB NB NB NB NB NM NS ZE 

TABLE II
INITIAL VALUE OF SCALING FACTORS

Joint
0eS 0ceS 0ieS 0outS

1 0.1 0.009 0.4 2109.375 
2 0.1 0.0084 0.4267 2400 
3 0.1 0.0084 0.4267 2400 
4 0.1 0.0056 0.64 5400 
5 0.1 0.0056 0.64 5400 
6 0.1 0.0056 0.64 5400 
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The algorithmic analog to this process begins with a random 
guess of the fitness function variable values. Heating means 
randomly modifying the variable values. Higher heat implies 
greater random fluctuations. The fitness function f(s)  returns 
the output associated with a set of variables. If the output 
decreases, then the new variable set replaces the old variable 
set. If the output increases, then the output is accepted 
provided that  

[ ( ) ( )]/old newf S f S Sr e
Where r is a uniform random number .Otherwise, the new 

variable set is rejected. As the temperature of the system 
decreases, the probability of accepting a worse move is 
decreased.  If the temperature is zero, then only better moves 
will be accepted. Thus, even if a variable set leads to a worse 
fitness value, it can be accepted with a certain probability. The 
new variable set is found by taking a random step from the old 
variable set 

new oldS dS                                         (13) 
The variable d is either uniformly or normally distributed 

about oldS . This control variable sets the step size so that, at 
the beginning of the process, the algorithm is forced to make 
large changes in variables values. At times the changes move 
the algorithm away from the optimum, which forces the 
algorithm to explore new regions of variable space. After a 
certain number of iterations, the new variable set no longer 
leads to lower fitness value. At this point the values of S and d 
decrease by a certain percent and the algorithm is repeated.  

C. Particle Swarm Optimization 
The algorithm is inspired by the social behavior of animals, 

such as bird flocking or fish schooling. PSO is similar to the 
continuous GA in that it begins with a random population 
matrix. Unlike the GA, PSO has no evolution operators such 
as crossover and mutation. The rows in the matrix are called 
particles (same as the GA chromosome). They contain the 
variable values and are not binary encoded. Each particle 
moves about the fitness function with a velocity.The particles 
update their velocities and positions based on the local and 
global best solutions: 

, , 1 1 , ,

2 2 , ,

( ) ....

.... ( )

new old localbest old
m n m n m n m n

gobalbest old
m n m n

v v r p p

r p p
 (14) 

, , ,
new old new
m n m n m np p v  (15) 

Where  
,m nv  Particle velocity, ,

localbest
m np    best local solution 

,m np  Variables ,
gobalbest
m np   best global solution 

1 2,r r   random number,        1 2,       learning factor 
The PSO algorithm updates the velocity vector for each 

particle then adds that velocity to the particle position . 
Velocity updates are influenced by both the best global 
solution associated with the lowest cost ever found by a 
particle and the best local solution associated with the lowest 

cost in the present population. If the best local solution has a 
cost less than the cost of the current global solution, then the 
best local solution replaces the best global solution. The 
particle velocity is reminiscent of local minimizers that use 
derivative information, because velocity is the derivative of 
position. The constant G1 is called the cognitive parameter. 
The constant G2 is called the social parameter. The 
advantages of PSO are that it is easy to implement and there 
are few parameters to adjust. The PSO is able to tackle tough 
cost functions with many local minima. 

D.  Generalized Pattern Search 
Generalized pattern search algorithms for unconstrained or 

linearly constrained minimization generate a sequence of 
iterates with non-increasing objective function values. 
Iteration is divided into two phases: an optional search and a 
local poll. In the search step f (s)   is evaluated at a finite 
number of points on a mesh (a discrete subset of bounded 
search space [lb, ub]) to find one that yields a lower 
f (s) value than the incumbent. 

Mesh : 
D

k k k zM S D z Z:  (16) 

D is a positive spanning set, k is mesh size parameter and kS
is a mesh local optimizer. 
Poll set: 

k k kS d d D:  (17) 
Search algorithm is given as 
Step 0 : 

Let S0 be such that f S0( ) is finite and M0 be the intial  mesh 
defined by 0 0 , and D0 .Set the iteration counter k to 0. 
Step 1 : 

Perform the Search and possibly the Poll steps (or only part of 
them) until an improved mesh point kS 1 with the lowest so far 
f s( ) value is found on the mesh Mk defined by (16). Evaluate 

f ( s )on the poll set defined in (17)  
Step 2: 

If the search or the poll step produced an improved mesh 
point, i.e., a feasible iterate k kx M1  for 
which k kf S f S1( ) ( ) , then update k k1  by (18) 

kw
k k1

for kw0 1 where 1 is a rational number that remains 
constant over all iterations, and kw 0  is an integer .If, 

k k kf S f S d( ) ( )  for all kd D , Set k kS S1 , update 

k k1  by (18) with kw 1 .
 Increase k k 1 and go back to the Step 1. 

E. Nelder-Mead method 
This algorithm for nonlinear Nelder-Mead optimization 

method consists of the following steps : 
Step.0 Initialization:
Generate an initial set of p + 1 extreme points in bounded 
search space say ( 1,2,.........., 1)iS i p  representing the 
vertices of the initial simplex. Calculate f(s) for each extreme 
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point. Set values for the algorithm coefficients , ,  and .
Default settings are 1.0, 0.5, 2.0, and 0.5 respectively 
Step.1 Reflection  
Identify the vertices where the maximum, second highest, and 
minimum f values occur. Let max 2 max,S S and minS represent these 
points, respectively. Let centS represent the centroid of all 

iS except for maxS Generate a new candidate vertex reflS  by 
reflecting maxS through centS  according 
to max(1 )   refl centS S S . ( 0)

Step.2.a Accept reflection
If min 2 max( ) ( ) ( )reflf S f S f S  then reflS replaces maxS in the 
simplex and proceed to step 3; else go to step.2.b. 
Step2.b Expansion
If min( ) ( )reflf S f S  the reflection is expanded according to 

exp (1 )refl centS S S

Where the expansion coefficient 1 , else go to step.2.c. 
If exp( ) ( )reflf S f S , then expS  replaces maxS  in the simplex; 
otherwise, the expansion is rejected and reflS  replaces maxS .Go
to step 1. 
Step.2.c Contraction
If reflf S f S2max( ) ( ) ,then the simplex contracts to reflect the 
poor reflS .Consider the two cases: (1)  

2 max max( ) ( ) ( )reflf S f S f S  (outside contraction) (2) 

max( ) ( )reflf S f S  (inside contraction).The contraction point is 
determined by max/ (1 )cont refl centS S S  , 0 1 where 

max/ refl reflS S  in case(1) or max/ refl reflS S  in case(2).In case(1) if 
( ) ( )cont reflf S f S  the contraction is accepted .In case(ii),if 

max( ) ( )contf S f S  the contraction is accepted .If contraction is 
accepted replace Smax  with contS  and go to step3. If contraction 
is not accepted go to step.2.d. 
Step.2.d Shrink
The contraction has failed and the entire simplex shrinks 
according to a factor of 0 1 retaining only minS . This is 
done by replacing each vertex iS (except minS )
by min(1 )iS S . Go to step.3. 
Step.3 Termination 

Stop if convergence criterion is satisfied or if the maximum 
number of function evaluations has been reached; else, returns 
to step 1. 

F.  Hybrid GA Technique
Genetic algorithm is well suited for global search 

techniques. GA reaches its search space very fast. On the 
other hand Nelder-Mead and Generalized pattern search are 
very efficient in local search techniques. Initial starting point 
affects the performance of local search techniques. Combining 
the advantages of both GA and local search technique, the 
performance of search algorithm is  improved .GA is used to 
set starting point of NM and GPS techniques. Algorithm 
consists of running GA for two time of population dimension. 

Start GPS or NM keeping starting point as solution coming 
out from GA. 

V. RESULTS

Initial values of Fuzzy PD+I scaling factors are choosen 
from crisp PID parameter value. Scaling factors are tuned with 
GA for 100 iteration with population size=40, crossover 
probability =0.8 and mutation probability=.01.Fitness function 
curve of GA tuning is shown in Fig.5 which clearly shows fast 
initial convergence characteristics of GA. It is clear from Fig.5 
that GA is converging very fast initially but taking more 
iteration later to reach optimal point. Fuzzy PD+I is tuned 
with PSO for 100 iterations with population size=40, 
maximum particle velocity=6 and acceleration constant (local 
and global best)=2.Fitness value curve for tuning using PSO is 
shown in Fig.6.PSO is showing better performace compared 
to GA.Fig.7 shows fitness curve for Tuning using SA .It is 
clear from Fig.7 that SA fails to find global optimal solution. 
Fig.8 shows best function value for tuning using GPS.GPS 
performnce is found to be better compared to GA and 
SA.From Fig.5  and Fig.8 it is clear that GA is reaching near 
optimal value very fast  while GPS shows just  opposite  result 
of   GA .GPS initial convergence rate is slow but once it 
reaches optimal search space, it is decreasing very sharply. 
More precisely it is concluded that GA is showing capability 
of global search but GPS is more efficient in local search. 
Merits of both GA and GPS can be combined to give a better 
hybrid search techniques. NM method is another best method 
for local search. Controller is tuned using hybrid GA-GPS and 
GA-NM .GA is runned for iteration=30, output of GA is set to 
be starting point of GPS and NM. Fitness curve of both the 
hybrid techniques   in Fig.9 and Fig.10 show that GA-GPS is 
converging fast compared to GA-NM. Both these are showing 
better performance compared to GA,SA and PSO. Comparing 
in terms of numbers of times fitness function is evaluated, GA 
and PSO takes 40x100=4000, while hybrid techniques take 
maximum of 40*30+100=1300 and searching global optima. 
Controller tuned using all these methods are tested for spiral 
trajectory tracking. The parametric equation of spiral 
trajectory is

( ) cos( ) 400x t t t 2( ) 0.0286(10 3 / ) 200y t t pi
( ) 3.33 sin( ) 250z t t t

All dimensions are in mm.To check the robustness of 
controller disturbance torque d is applied. 

1.5sin(4.3575 ) sin( 9.825) sin(2.7075)+1d t
Comparison in terms of performance index f(s) and cartesian 
space integral squared error ISEX,ISEY and ISEZ  is shown in 
Table. III. 

2 2 2

1 1 1
( )  ,   ( )  ,  ( )

n n n

k k k
ISEX dx ISEY dy ISEZ dz

( ) ( ) , ( ) ( ) , ( ) ( )d d ddx x k x k dy y k y k dz z k z k
Joint angles for spiral trajectory tracking without 

disturbance using untuned Fuzzy PD+I controller are shown 
in Fig.11.a and Fig.11.b.Fig.12 shows the spiral trajectory 
tracking  using untuned Fuzzy PD+I controller without 
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disturbance and Fig.13 shows corresponding is tracking error 
in cartesian space. Since order of error is small compared to 
joint angle, the actual and desired joint angles are overlapping 
but the difference is clear in form of error in all the figures. 
Fig.14.a and Fig14.b show joint angles with disturbance using 
untuned controller .Fig. 15 and Fig.16 show tracked trajectory 
and corresponding Cartesian space error. A large error is 
coming out in case of untuned controller which is shown in 
Table.III .The controller is tuned with various methods but 
best is hybrid techniques. Therefore responses of only GA-
GPS shown and others are being compared in form of 
Table.III .Fig.17.a and Fig.17.b shows joint angle using GA-
GPS without disturbance. Fig.18 and Fig.19 shows tracked 
trajectory and tracking error. Fig.20.a and Fig.20.b show joint 
angles using GA-GPS with disturbance .Fig.21 and Fig.22 
show tracked trajectory and tracking error. A large amount of 
error is being reduced with tuning using hybrid techniques. 

Fig. 5 Fitness function curve of GA

Fig. 6 Fitness function curve of PSO

Fig. 7 Fitness function curve of SA

Fig. 8 Fitness function curve of GPS

Fig. 9 Fitness function curve of GA GPS

Fig. 10 Fitness function curve of GA NM

TABLE III
ISE IN CARTESIAN SPACE FOR ALL METHODS

ISEX (mm) 
ISEY (mm) 
ISEZ (mm) 

Without d With d

26.8915 599.0691 
0.2823 663.5670 

Untuned

93.7527 554.9276 
 15.3052 733.7772 
0.0638 179.2775 

GA

55.5295 308.4535 
446.2807 802.5476 
2.7118 391.7494 

SA

57.4151 668.8036 
10.9776 437.1578 
0.0498 244.7739 

PSO

29.7441 230.5712 
13.1754 595.4619 
0.1375 124.8692 

GPS

5.9448 40.3052 
25.2411 458.5317 
0.0820 326.7774 

GA-NM

32.0323 311.3924 
19.2309 474.2470 
0.0383 133.0601 

GA-GPS

27.7857 282.4736 
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Fig. 11.a joint angles with untuned fuzzy PD+I without disturbance  
for spiral trajectory. 

Fig. 11.b joint angles with untuned fuzzy PD+I without disturbance  
for spiral trajectory. 

Fig. 12 Spiral trajectory with untuned fuzzy PD+I without 
disturbance

Fig. 13 cartesian space error with untuned fuzzy PD+I without 
disturbance  for spiral trajectory

Fig. 14.a joint angles with untuned fuzzy PD+I with disturbance  for 
spiral trajectory

Fig. 14.b joint angles with untuned fuzzy PD+I with disturbance  for 
spiral trajectory
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Fig. 15 Spiral trajectory with untuned fuzzy PD+I with disturbance

Fig. 16 cartesian space error with untuned fuzzy PD+I with 
disturbance for spiral trajectory 

Fig. 17.a joint angles with GA-GPS tuned fuzzy PD+I without 
disturbance for spiral trajectory

Fig. 17.b joint angles with GA-GPS tuned fuzzy PD+I without 
disturbance  for spiral trajectory

Fig. 18 Spiral trajectory with GA-GPS tuned fuzzy PD+I without 
disturbance

Fig. 19 cartesian space error with GA-GPS tuned fuzzy PD+I without 
disturbance for spiral trajectory
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Fig .20.a joint angles with GA-GPS tuned fuzzy PD+I with 
disturbance  for spiral trajectory

Fig. 20.b joint angles with GA-GPS tuned fuzzy PD+I with 
disturbance for spiral trajectory

Fig. 21 Spiral trajectory with GA-GPS tuned fuzzy PD+I with 
disturbance

Fig. 22 Cartesian space error with GA-GPS tuned fuzzy PD+I with 
disturbance for spiral trajectory

VI. CONCLUSIONS

In this paper Fuzzy PD+I controller for Puma 560 is 
designed and tuned using different heuristic search algorithms. 
Since the actual control is in joint space, inverse kinematics is 
used in the beginning to generate various joint angles 
corresponding to desired cartesian space trajectory. The 
controlled cartesian space trajectory is later obtained using 
forward kinematics. The tuning of fuzzy PID parameters is 
carried out using GA, GPS, PSO, SA, hybridized GA-GPS 
and GA-NM and compared with those based on classical 
methods. Initial convergence rate of GA and PSO is high but 
takes more number of iterations later to reach optimal point. 
Initial convergence rate of GPS is low, but once it is reaching 
search space, it is quit fast.  Tuning performance with and 
without disturbance is compared for all the above approaches 
in joint space as well as cartesian space. Hybridized GA-GPS 
is showing best performance compared to all. Extension of 
this work is planned for multi objective formulation. 
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