WASET
	%0 Journal Article
	%A Amon Tunwannarux and  Supanunt Tunwannarux
	%D 2008
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 13, 2008
	%T Design of a 5-Joint Mechanical Arm with User-Friendly Control Program
	%U https://publications.waset.org/pdf/13795
	%V 13
	%X This paper describes the design concepts and
implementation of a 5-Joint mechanical arm for a rescue robot named
CEO Mission II. The multi-joint arm is a five degree of freedom
mechanical arm with a four bar linkage, which can be stretched to
125 cm. long. It is controlled by a teleoperator via the user-friendly
control and monitoring GUI program. With Inverse Kinematics
principle, we developed the method to control the servo angles of all
arm joints to get the desired tip position. By clicking the determined
tip position or dragging the tip of the mechanical arm on the
computer screen to the desired target point, the robot will compute
and move its multi-joint arm to the pose as seen on the GUI screen.
The angles of each joint are calculated and sent to all joint servos
simultaneously in order to move the mechanical arm to the desired
pose at once. The operator can also use a joystick to control the
movement of this mechanical arm and the locomotion of the robot.
Many sensors are installed at the tip of this mechanical arm for
surveillance from the high level and getting the vital signs of victims
easier and faster in the urban search and rescue tasks. It works very
effectively and easy to control. This mechanical arm and its software
were developed as a part of the CEO Mission II Rescue Robot that
won the First Runner Up award and the Best Technique award from
the Thailand Rescue Robot Championship 2006. It is a low cost,
simple, but functioning 5-Jiont mechanical arm which is built from
scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont
mechanical arm hardware concept and its software can also be used
as the basic mechatronics to many real applications.
	%P 75 - 80