Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31203
Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics

Authors: S. Gómez, G. Sánchez, J. Zarama, M. Castañeda Ramos, J. Escoto Alcántar, J. Torres, A. Núñez, S. Santana, F. Nájera, J. A. Lopez

Abstract:

This paper shows in detail the mathematical model of direct and inverse kinematics for a robot manipulator (welding type) with four degrees of freedom. Using the D-H parameters, screw theory, numerical, geometric and interpolation methods, the theoretical and practical values of the position of robot were determined using an optimized algorithm for inverse kinematics obtaining the values of the particular joints in order to determine the virtual paths in a relatively short time.

Keywords: Optimization, Kinematics, degree of freedom, robot manipulator

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1105267

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5544

References:


[1] Bin Niu, Hui Zhang, “Model based control of industrial robot and implementation of its gain scheduling robust control”, IEEE International Conference on Robotics and Biomimetics (ROBIO), Karon Beach, Phuket, 2011, pp. 2156-2162.
[2] M. Pala, D. Lorencik, P. Sincak,“Towards the robotic teleoperation systems in education”, IEEE 10th International Conference on Emerging eLearning Technologies & Applications (ICETA), StaraLesna, 2012, pp.241-246.
[3] D. Meike, M. Pellicciari, G. Berselli, “Energy Efficient Use of Multirobot Production Lines in the Automotive Industry: Detailed System Modeling and Optimization”, IEEE Transactions on Automation Science and Engineering, 2014, 11(3), pp.798-809
[4] A. G. Banerjee, S. K. Gupta, “Research in Automated Planning and Control for Micromanipulation”. IEEE Transactions on Automation Science and Engineering, 2013. 10(3). pp. 485-495.
[5] K. Ravichandran, “Driving simulator for tracked vehicles using Stewart platform manipulator”, International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010, pp.245-249.
[6] H. Moradi, K. Kawamura, E. Prassler, G. Muscato, P. Fiorini, T. Sato, R. Rusu, “Service robotics”. IEEE Robotics & Automation Magazine, 2013, 20(3), pp.22-24.
[7] A. Olaru. “The optimizing space trajectory by using the inverse kinematics, direct dynamics and intelligent damper controlling with proper neural network”, International Conference on Advanced Mechatronic Systems (ICAMechS), Tokyo, 2012, pp.504-509.
[8] M. Rolf, J. J. Steil, M. Gienger, “Goal Babbling Permits Direct Learning of Inverse Kinematics”, IEEE Transactions on Autonomous Mental Development, 2010, 2(3), pp.216-229.
[9] K.Ofjall, M. Felsberg, “Rapid explorative direct inverse kinematics learning of relevant locations for active vision”, IEEE Workshop on Robot Vision (WORV), Clearwater Beach, FL 2013, pp.14-19
[10] L.G. Herrera-Bendezu. E. Mu, T. Cain, James, “Symbolic computation of robot manipulator kinematics”, IEEE International Conference on 998.
[11] N. A. Aspragathos, J. K. Dimitros, “A comparative study of three methods for robot kinematics”, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1998, 28(2), pp.135-145
[12] E. Sariyildiz, H. Temeltas, “A comparison study of three screw theory based kinematic solution methods for the industrial robot manipulators”, International Conference on Mechatronics and Automation (ICMA), 2011, pp.52-57
[13] John J. Craig, Introduction to Robotics, Pearson Prentice Hall, 2006.
[14] Atique, M. M. U., Ahad, M. A. R., “Inverse Kinematics solution for a 3DOF robotic structure using Denavit-Hartenberg Convention”, International Conference on Informatics, Electronics & Vision (ICIEV), 2014, pp.1-5.
[15] Jian Fang, Tao Mei, Jian Chen, Jianghai Zhao. “An iteration method for inverse kinematics of redundancy robot”. IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, 2014, pp.1005-1010.
[16] Jing Huang, Xianlun Wang, Dongsheng Liu, Yuxia Cui, “A New Method for Solving Inverse Kinematics of an Industrial Robot”, International Conference on Computer Science and Electronics Engineering (ICCSEE), Hangzhou, 2012, pp. 53-56.
[17] T. Takahashi, A. Kawamura, “The high-speed numerical calculation method for the on-line inverse kinematics of redundant degree of freedom manipulators”, Proceedings. 6th International Workshop on Advanced Motion Control, Nagoya, Japan, 2000, pp. 618-623.
[18] S. Yahya, H. A. F. Mohamed, M. Moghavvemi, S.S Yang,. “A new geometrical inverse kinematics method for planar hyper redundant manipulators”, IEEE Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), Monash, 2009, pp.20-22.
[19] H Ananthanarayanan, R. Ordonez, “Real-time Inverse Kinematics of redundant manipulator using a hybrid (analytical and numerical) method”, 16th International Conference on Advanced Robotics (ICAR), Montevideo, 2013, pp.1-6.