Search results for: Gold nanoparticle
388 3D Interactions in Under Water Acoustic Simulationseffect of Green Synthesized Metal Nanoparticles on Gene Expression in an In-Vitro Model of Non-alcoholic Steatohepatitis
Authors: Nendouvhada Livhuwani Portia, Nicole Sibuyi, Kwazikwakhe Gabuza, Adewale Fadaka
Abstract:
Metabolic dysfunction-associated liver disease (MASLD) is a chronic condition characterized by excessive fat accumulation in the liver, distinct from conditions caused by alcohol, viral hepatitis, or medications. MASLD is often linked with metabolic syndrome, including obesity, diabetes, hyperlipidemia, and hypertriglyceridemia. This disease can progress to metabolic dysfunction-associated steatohepatitis (MASH), marked by liver inflammation and scarring, potentially leading to cirrhosis. However, only 43-44% of patients with steatosis develop MASH, and 7-30% of those with MASH progress to cirrhosis. The exact mechanisms underlying MASLD and its progression remain unclear, and there are currently no specific therapeutic strategies for MASLD/MASH. While anti-obesity and anti-diabetic medications can reduce progression, they do not fully treat or reverse the disease. As an alternative, green-synthesized metal nanoparticles (MNPs) are emerging as potential treatments for liver diseases due to their anti-diabetic, anti-inflammatory, and anti-obesity properties with minimal side effects. MNPs like gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) have been shown to improve metabolic processes by lowering blood glucose, body fat, and inflammation. The study aimed to explore the effects of green-synthesized MNPs on gene expression in an in vitro model of MASH using C3A/HepG2 liver cells. The MASH model was created by exposing these cells to free fatty acids (FFAs) followed by lipopolysaccharide (LPS) to induce inflammation. Cell viability was assessed with the Water-Soluble Tetrazolium (WST)-1 assay, and lipid accumulation was measured using the Oil Red O (ORO) assay. Additionally, mitochondrial membrane potential was assessed by the tetramethyl rhodamine, methyl ester (TMRE) assay, and inflammation was measured with an Enzyme-Linked Immunosorbent Assay (ELISA). The study synthesized AuNPs from Carpobrotus edulis fruit (CeF) and avocado seed (AvoSE) and AgNPs from Salvia africana-lutea (SAL) using optimized conditions. The MNPs were characterized by UV-Vis spectrophotometry and Dynamic Light Scattering (DLS). The nanoparticles were tested at various concentrations for their impact on the C3A/HepG2-induced MASH model. Among the MNPs tested, AvoSE-AuNPs showed the most promise. They reduced cell proliferation and intracellular lipid content more effectively than CeFE-AuNPs and SAL-AgNPs. Molecular analysis using real-time polymerase chain reaction revealed that AvoSE-AuNPs could potentially reverse MASH effects by reducing the expression of key pro-inflammatory and metabolic genes, including tumor necrosis factor-alpha (TNF-α), Fas cell surface death receptor (FAS), Peroxisome proliferator-activated receptor (PPAR)-α, PPAR-γ, and Sterol regulatory element-binding protein (SREBPF)-1. Further research is needed to confirm the molecular mechanisms behind the effects of these MNPs and to identify the specific phytochemicals responsible for their synthesis and bioactivities.Keywords: gold nanoparticles, green nanotechnology, metal nanoparticles, obesity
Procedia PDF Downloads 25387 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 371386 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy
Authors: Syue-Liang Lin, C. Allen Chang
Abstract:
Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics
Procedia PDF Downloads 235385 Application of Liquid Chromatographic Method for the in vitro Determination of Gastric and Intestinal Stability of Pure Andrographolide in the Extract of Andrographis paniculata
Authors: Vijay R. Patil, Sathiyanarayanan Lohidasan, K. R. Mahadik
Abstract:
Gastrointestinal stability of andrographolide was evaluated in vitro in simulated gastric (SGF) and intestinal (SIF) fluids using a validated HPLC-PDA method. The method was validated using a 5μm ThermoHypersil GOLD C18column (250 mm × 4.0 mm) and mobile phase consisting of water: acetonitrile; 70: 30 (v/v) delivered isocratically at a flow rate of 1 mL/min with UV detection at 228 nm. Andrographolide in pure form and extract Andrographis paniculata was incubated at 37°C in an incubator shaker in USP simulated gastric and intestinal fluids with and without enzymes. Systematic protocol as per FDA Guidance System was followed for stability study and samples were assayed at 0, 15, 30 and 60 min intervals for gastric and at 0, 15, 30, 60 min, 1, 2 and 3 h for intestinal stability study. Also, the stability study was performed up to 24 h to see the degradation pattern in SGF and SIF (with enzyme and without enzyme). The developed method was found to be accurate, precise and robust. Andrographolide was found to be stable in SGF (pH ∼ 1.2) for 1h and SIF (pH 6.8) up to 3 h. The relative difference (RD) of amount of drug added and found at all time points was found to be < 3%. The present study suggests that drug loss in the gastrointestinal tract takes place may be by membrane permeation rather than a degradation process.Keywords: andrographolide, Andrographis paniculata, in vitro, stability, gastric, Intestinal HPLC-PDA
Procedia PDF Downloads 243384 Sensing Characteristics of Gold Nanoparticles Decorated Sputtered Tin Oxide Thin Films as Nitrogen Oxide Sensor
Authors: Qasem Drmosh, Zain Yamai, Amar Mohamedkhair, Abdulmajid Hendi
Abstract:
In recent years, there has been a growing interest in the reduction of the nitrogen oxides NOx (NO2, NO) gases resulting from automotive or combustion emissions. Recently, metal additives in nanometer dimension onto the surface of SnO2 nanorods, nanowires and nanotubes sensitizer to further increase the sensor response have been used. In contrast, there is a lack study focused on modifying the surface of SnO2 thin films by nanoparticles. The challenge in case of thin films is how to fabricate these nanoparticles on the surfaces in cost-effective method, high purity as well as without hampering electrical and topographical properties. Here in this report, a simple and facile strategy has been demonstrated to acquire high sensitive and fast response NO2 gas sensor. Structural, electrical, morphological, optical, and compositional properties of the fabricated sensors were investigated through different analytical technique including X-ray diffraction (XRD), Field emission scanning emission microscope (FESEM) and X-ray photoelectron spectroscopy (XPS). The sensing performance of the prepared sensors are studied at different temperatures for various concentrations of NO2 and compared with pristine SnO2 film.Keywords: NO2 sensor, SnO2, sputtering, thin films
Procedia PDF Downloads 211383 Effect of Particles Size and Volume Fraction Concentration on the Thermal Conductivity and Thermal Diffusivity of Al2O3 Nanofluids Measured Using Transient Hot–Wire Laser Beam Deflection Technique
Authors: W. Mahmood Mat Yunus, Faris Mohammed Ali, Zainal Abidin Talib
Abstract:
In this study we present new data for the thermal conductivity enhancement in four nanofluids containing 11, 25, 50, 63 nm diameter aluminum oxide (Al2O3) nanoparticles in distilled water. The nanofluids were prepared using single step method (i.e. by dispersing nanoparticle directly in base fluid) which was gathered in ultrasonic device for approximately 7 hours. The transient hot-wire laser beam displacement technique was used to measure the thermal conductivity and thermal diffusivity of the prepared nanofluids. The thermal conductivity and thermal diffusivity were obtained by fitting the experimental data to the numerical data simulated for aluminum oxide in distilled water. The results show that the thermal conductivity and thermal diffusivity of nanofluids increases in non-linear behavior as the particle size increases. While, the thermal conductivity and thermal diffusivity of Al2O3 nanofluids was observed increasing linearly with concentration as the volume fraction concentration increases. We believe that the interfacial layer between solid/fluid is the main factor for the enhancement of thermal conductivity and thermal diffusivity of Al2O3 nanofluids in the present work.Keywords: transient hot wire-laser beam technique, Al2O3 nanofluid, particle size, volume fraction concentration
Procedia PDF Downloads 550382 PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells
Authors: H. Tayefih, F. farajzade ahari, F. Zarghami, V. Zeighamian, N. Zarghami, Y. Pilehvar-soltanahmadi
Abstract:
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.Keywords: PNIPAAm-MAA, breast cancer, curcumin, drug delivery
Procedia PDF Downloads 373381 Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation
Authors: F. Kashanian, M. M. Masoudi, A. Akbari, A. Shamloo, M. R. Zand, S. S. Salehi
Abstract:
Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe3O4 nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment.Keywords: tumor tissue, antibody, magnetic nanoparticle, CTCs capturing
Procedia PDF Downloads 360380 Investigation of the Possibility of Using Carbon Onion Nanolubrication with DLC Cutting Tool to Reduce the Machining Power Consumption
Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi
Abstract:
Due to rapid consumption of world's fossil fuel resources and impracticality of large-scale application and production of renewable energy, the significance of energy efficiency improvement of current available energy modes has been widely realized by both industry and academia. In the CNC machining field, the key solution for this issue is by increasing the effectiveness of the existing lubrication systems as it could reduce the power required to overcome the friction component in machining process. For more improvement, introducing the nanolubrication could produce much less power consumption as the rolling action of billions units of nanoparticle in the tool chip interface could reduce the cutting forces significantly. In this research, the possibility of using carbon onion nanolubrication with DLC cutting tool is investigated to reduce the machining power consumption. Carbon onion nanolubrication has been successfully developed with high tribology performance and mixed with ordinary mineral oil. The proper sonification method is used to provide a way to mix and suspend the particles thoroughly and efficiently. Furthermore, Diamond-Like Carbon (DLC) cutting tool is used and expected to play significant role in reducing friction and cutting forces and increasing abrasion resistance. The results showed significant reduction of the cutting force and the working power compared with the other conditions of using carbon black and normal lubrication systems.Keywords: carbon onion, nanolubrication, machining power consumption, DLC cutting tool
Procedia PDF Downloads 432379 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia
Authors: Soheil Roumi, Fan Zhang, Rodney Stewart
Abstract:
Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.Keywords: IEQ, office buildings, thermal comfort, occupant resilience
Procedia PDF Downloads 112378 Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India
Authors: Varsha Gupta, Priya Datta, Gursimran Mohi, Jagdish Chander
Abstract:
Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.Keywords: salmonella, pefloxacin, surrogate marker, chloramphenicol
Procedia PDF Downloads 988377 Formulation and in Vitro Characterization of Bioactives Loaded Polymeric Nanoparticle Incorporated into Multiphase Hydrogel System for the Treatment of Infected Burn Wound
Authors: Rajni Kant Panik, Deependra Singh, Manju Singh
Abstract:
Despite significant advances in the treatment of severe burn injury, infection and sepsis persist as frequent causes of morbidity and mortality for burn victims due to extensive compromise of the skin and contiguous tissue that serve as a protective barrier against microbial invasion. In the setting of a burn wound infection, Staphylococcus aureus is the most commonly isolated pathogens from bloodstream infections in burn care hospitals. We aimed to develop a biocompatible system of Poly vinyl alcohol (PVA)-sodium alginate hydrogel carrying multiple drugs- catalase and mupirocin in controlled manner for effective and complete burn wound healing. PLGA nanoparticles of Catalase and mupirocin were prepared by homogenization method and optimized system was incorporated in PVA-sodium alginate slurry. PVA-sodium alginate hydrogels were prepared by freeze thaw method. The prepared dispersion was casted into films to prepare multiphase hydrogel system and characterized by in vitro and in vivo studies. The study clearly showed the beneficial effect of antioxidant enzyme and antibiotic in the treatment of infected burn wound, as evidenced by the reduced incidence of wound infection and the shortening of healing time.Keywords: burn wound, catalase, mupirocin, wound healing
Procedia PDF Downloads 503376 SPR Immunosensor for the Detection of Staphylococcus aureus
Authors: Muhammad Ali Syed, Arshad Saleem Bhatti, Chen-zhong Li, Habib Ali Bokhari
Abstract:
Surface plasmon resonance (SPR) biosensors have emerged as a promising technique for bioanalysis as well as microbial detection and identification. Real time, sensitive, cost effective, and label free detection of biomolecules from complex samples is required for early and accurate diagnosis of infectious diseases. Like many other types of optical techniques, SPR biosensors may also be successfully utilized for microbial detection for accurate, point of care, and rapid results. In the present study, we have utilized a commercially available automated SPR biosensor of BI company to study the microbial detection form water samples spiked with different concentration of Staphylococcus aureus bacterial cells. The gold thin film sensor surface was functionalized to react with proteins such as protein G, which was used for directed immobilization of monoclonal antibodies against Staphylococcus aureus. The results of our work reveal that this immunosensor can be used to detect very small number of bacterial cells with higher sensitivity and specificity. In our case 10^3 cells/ml of water have been successfully detected. Therefore, it may be concluded that this technique has a strong potential to be used in microbial detection and identification.Keywords: surface plasmon resonance (SPR), Staphylococcus aureus, biosensors, microbial detection
Procedia PDF Downloads 475375 The Role of Cyfra 21-1 in Diagnosing Non Small Cell Lung Cancer (NSCLC)
Authors: H. J. T. Kevin Mozes, Dyah Purnamasari
Abstract:
Background: Lung cancer accounted for the fourth most common cancer in Indonesia. 85% of all lung cancer cases are the Non-Small Cell Lung Cancer (NSCLC). The indistinct signs and symptoms of NSCLC sometimes lead to misdiagnosis. The gold standard assessment for the diagnosis of NSCLC is the histopathological biopsy, which is invasive. Cyfra 21-1 is a tumor marker, which can be found in the intermediate protein structure in the epitel. The accuracy of Cyfra 21-1 in diagnosing NSCLC is not yet known, so this report is made to seek the answer for the question above. Methods: Literature searching is done using online databases. Proquest and Pubmed are online databases being used in this report. Then, literature selection is done by excluding and including based on inclusion criterias and exclusion criterias. The selected literature is then being appraised using the criteria of validity, importance, and validity. Results: From six journals appraised, five of them are valid. Sensitivity value acquired from all five literature is ranging from 50-84.5 %, meanwhile the specificity is 87.8 %-94.4 %. Likelihood the ratio of all appraised literature is ranging from 5.09 -10.54, which categorized to Intermediate High. Conclusion: Serum Cyfra 21-1 is a sensitive and very specific tumor marker for diagnosis of non-small cell lung cancer (NSCLC).Keywords: cyfra 21-1, diagnosis, nonsmall cell lung cancer, NSCLC, tumor marker
Procedia PDF Downloads 232374 The Effect of Adding CuO Nanoparticles on Boiling Heat Transfer Enhancement in Horizontal Flattened Tubes
Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi
Abstract:
An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused a significant enhancement in heat transfer performance, so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%. The best flat channel with the point of view of heat transfer performance was selected to study the effect of nanoparticle on heat transfer enhancement. Four homogenized mixtures containing 1% weight fraction of R600a/oil with different CuO nanoparticles concentration including 0.5%, 1% and 1.5% mass fraction of R600a/oil/CuO were studied. Observations show that heat transfer was improved by adding nanoparticles, which lead to maximum enhancement of 79% compare to the pure refrigerant at the same test condition.Keywords: nano fluids, heat transfer, flattend tube, transport phenomena
Procedia PDF Downloads 432373 First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles
Authors: Kolja Them, Priyal Chikhaliwala, Sudeshna Chandra
Abstract:
Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis.Keywords: noninvasive imaging, tumor antigens, antibody conjugated iron oxide nanoparticles, multicolor magnetic particle imaging, cancer diagnosis
Procedia PDF Downloads 303372 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery
Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei
Abstract:
Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack
Procedia PDF Downloads 206371 Experimental Design for Formulation Optimization of Nanoparticle of Cilnidipine
Authors: Arti Bagada, Kantilal Vadalia, Mihir Raval
Abstract:
Cilnidipine is practically insoluble in water which results in its insufficient oral bioavailability. The purpose of the present investigation was to formulate cilnidipine nanoparticles by nanoprecipitation method to increase the aqueous solubility and dissolution rate and hence bioavailability by utilizing various experimental statistical design modules. Experimental design were used to investigate specific effects of independent variables during preparation cilnidipine nanoparticles and corresponding responses in optimizing the formulation. Plackett Burman design for independent variables was successfully employed for optimization of nanoparticles of cilnidipine. The influence of independent variables studied were drug concentration, solvent to antisolvent ratio, polymer concentration, stabilizer concentration and stirring speed. The dependent variables namely average particle size, polydispersity index, zeta potential value and saturation solubility of the formulated nanoparticles of cilnidipine. The experiments were carried out according to 13 runs involving 5 independent variables (higher and lower levels) employing Plackett-Burman design. The cilnidipine nanoparticles were characterized by average particle size, polydispersity index value, zeta potential value and saturation solubility and it results were 149 nm, 0.314, 43.24 and 0.0379 mg/ml, respectively. The experimental results were good correlated with predicted data analysed by Plackett-Burman statistical method.Keywords: dissolution enhancement, nanoparticles, Plackett-Burman design, nanoprecipitation
Procedia PDF Downloads 159370 Liposomal Encapsulation of Silver Nanoparticle for Improved Delivery and Enhanced Anticancer Properties
Authors: Azeez Yusuf, Alan Casey
Abstract:
Silver nanoparticles (AgNP) are one of the most widely investigated metallic nanoparticles due to their promising antibacterial activities. In recent years, AgNP research has shifted beyond antimicrobial use to potential applications in the medical arena. This shift coupled with the extensive commercial applications of AgNP will further increase human exposure, and the subsequent risk of adverse effects that may result from repeated exposures and inefficient delivery meaning research into improved AgNP delivery is of paramount importance. In this study, AgNP were encapsulated in a natural bio-surfactant, dipalmitoylphosphatyidyl choline (DPPC), in an attempt to enhance the intracellular delivery and simultaneously mediate the associated cytotoxicity of the AgNP. It was noted that as a result of the encapsulation, liposomal-AgNP (Lipo-AgNP) at 0.625 μg/ml induced significant cell death in THP1 cell lines a notably lower dose than that of the uncoated AgNP induced cytotoxicity. The induced cytotoxicity was shown to result in an increased level of DNA fragmentation resulting in a cell cycle interruption at the S phase of the cell cycle. It was shown that the predominate form of cell death upon exposure to both uncoated and Lipo-AgNP was apoptosis, however, a ROS-independent activation of the executioner caspases 3/7 occurred when exposed to the Lipo-AgNP. These findings showed that encapsulation of AgNP enhances AgNP cytotoxicity and mediates an ROS-independent induction of apoptosis.Keywords: silver nanoparticles, AgNP, cytotoxicity, encapsulation, liposome
Procedia PDF Downloads 156369 Association of Genetic Variants of Apolipoprotein A5 Gene with the Metabolic Syndrome in the Pakistani Population
Authors: Muhammad Fiaz, Muhammad Saqlain, Bernard M. Y. Cheung, S. M. Saqlan Naqvi, Ghazala Kaukab Raja
Abstract:
Background: Association of C allele of rs662799 SNP of APOA5 gene with metabolic syndrome (MetS) has been reported in different populations around the world. A case control study was conducted to explore the relationship of rs662799 variants (T/C) with the MetS and the associated risk phenotypes in a population of Pakistani origin. Methods: MetS was defined according to the IDF criteria. Blood samples were collected from the Pakistan Institute of Medical Sciences, Islamabad, Pakistan for biochemical profiling and DNA extraction. Genotyping of rs662799 was performed using mass ARRAY, iPEX Gold technology. A total of 712 unrelated case and control subjects were genotyped. Data were analyzed using Plink software and SPSS 16.0. Results: The risk allele C of rs662799 showed highly significant association with MetS (OR=1.5, Ρ=0.002). Among risk phenotypes, dyslipidemia, and obesity showed strong association with SNP (OR=1.49, p=0.03; OR =1.46, p=0.01) respectively in models adjusted for age and gender. Conclusion: The rs662799C allele is a significant risk marker for MetS in the local Pakistani population studied. The effect of the SNP is more on dyslipidemia than the other components of the MetS.Keywords: metabolic syndrome, APOA5, rs662799, dyslipidemia, obesity
Procedia PDF Downloads 503368 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis
Authors: Mangaka C. Matoetoe, Fredrick O. Okumu
Abstract:
Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.Keywords: kinetics, morphology, nanoparticles, platinum, silver
Procedia PDF Downloads 401367 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties
Authors: Mahnoosh Aliahmadi, Akbar Esmaeili
Abstract:
This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium
Procedia PDF Downloads 80366 Ethical Investment Instruments for Financial Sustainability
Authors: Sarkar Humayun Kabir
Abstract:
This paper aims to investigate whether ethical investment instruments could contribute to stability in financial markets. In order to address the main issue, the study investigates the stability of return in seven conventional and Islamic equity markets of Asia, Europe and North America and in five major commodity markets starting from 1996 to June 2012. In addition, the study examines the unconditional correlation between returns of the assets under review to investigate portfolio diversification benefits of investors. Applying relevant methods, the study finds that investors may enjoy sustainable returns from their portfolios by investing in ethical financial instruments such as Islamic equities. In addition, it should be noted that most of the commodities, gold in particular, are either low or negatively correlated with equity returns. These results suggest that investors would be better off by investing in portfolios combining Islamic equities and commodities in general. The sustainable returns of ethical investments has important implications for the investors and markets since these investments can provide stable returns while the investors can avoid production of goods and services which believes to be harmful for human and the society as a whole.Keywords: financial sustainability, ethical investment instruments, islamic equity, dynamic conditional correlation, conditional volatility
Procedia PDF Downloads 307365 Bioremediation of Disposed X-Ray Film for Nanoparticles Production
Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen
Abstract:
The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD
Procedia PDF Downloads 483364 Effect of Non-Invasive Electrical Stimulation on Partial Hearing Loss: Pilot Study
Authors: Geetanjali Saggar
Abstract:
Background: Partial hearing loss is the inability to hear effectively as a normal hearing individual whose hearing threshold is 20 dB or better in both ears. Individuals with partial hearing loss may benefit from non-invasive electrical stimulation as a method of therapy and possible intervention. Objective: The project aims to assess and relate the efficacy of electrical stimulation on individuals with partial hearing loss. The study's goal was to evaluate the different sorts of non-invasive electrical stimulation in tinnitus and hearing loss in order to build the framework for future research. Method: In this pilot study, a total of five patients of age group above 50 years were selected with partial hearing loss. The electrical modality of Repetitive Transcranial Magnetic Stimulation (RTMS) was used among the patients and was evaluated using gold questionnaires- HHIA and APHAB for hearing at intervals of 0-7-14 days. The statistical data was analyzed by SPSS software-16. Results: There were not much significant changes in the hearing of the patients when non-invasive electrical modality was applied as an intervention in the partial hearing loss condition. However, there was minimal change in the daily functioning of the patient with the application of intervention. Conclusion: This study concluded that non-invasive electrical stimulation had minimal to no effect on the partial hearing of the patients.Keywords: non-invasive, hearing loss, transcranial magnetic stimulation, partial deafness, transcranial direct current stimulation, tinnitus
Procedia PDF Downloads 11363 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery
Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong
Abstract:
Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention
Procedia PDF Downloads 365362 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles
Authors: Dada Kolawole Segun
Abstract:
Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials
Procedia PDF Downloads 90361 Investigation of Various Physical and Physiological Properties of Ethiopian Elite Men Distances Runners
Authors: Getaye Fisseha Gelaw
Abstract:
The purpose of this study was to investigate the key physical and physiological characteristics of 16 elite male Ethiopian national team distance runners, who have an average age of 28.1±4.3 years, a height of 175.0 ±5.6 cm, a weight of 59.1 ±3.9 kg, a BMI of 19.6 ±1.5, and training age of 10.1 ±5.1 yrs. The average weekly distance is 196.3±13.8 km, the average 10,000m time is 27:14±0.5 min sec, the average half marathon time is 59:30±0.6 min sec, the average marathon time is 2hr 03min 39sec±0.02. In addition, the average Cooper test (12-minute run test) is 4525.4±139.7 meters, and the average VO2 max is 90.8±3.1ml/kg/m. All athletes have a high profile and compete on the international label, and according to the World Athletics athletes' ranking system in 2021, 56.3% of the 16 participants were platinum label status, while the remaining 43.7 % were gold label status-completed an incremental treadmill test for the assessment of VO2peak, submaximal running, lactate threshold and test during which they ran continuously at 21 km/h. The laboratory determined VO2peak was 91.4 ± 1.7 mL/kg/min with anaerobic threshold of 74.2±1.6 mL/min/Kg and VO2max 81%. The speed at the AT is 15.9 ±0.6 Kmh and the altitude is 4,0%. The respiratory compensation RC point was reached at 88.7±1.1 mL/min/Kg and 97% of VO2 max. On RCP, the speed is 17.6 ±0.4 km/h and the altitude/slope are 5.5% percent, and the speed at Maximum effort is 19.5 ±1.5 and the elevation is 6.0%. The data also suggest that Ethiopian distance top athletes have considerably higher VO2 max values than those found in earlier research.Keywords: long-distance running, Ethiopians, VO2 max, world athletics, anthropometric
Procedia PDF Downloads 128360 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 155359 Analysis of Oral and Maxillofacial Histopathology Service in Tertiary Center in Oman in the Past 13 Years
Authors: Sabreen Al Shamli, Abdul Rahman Al azure
Abstract:
Microscopic examination by histopathology is the gold standard for diagnosing many oral and maxillofacial pathologies. Current clinical guidelines and medicolegal regulations recommend the utilization of histopathology services for confirming pathologies being treated. The goal of this study was to determine the prevalence and distribution of oral and maxillofacial biopsies that had been histopathologically diagnosed at Anahdha Hospital (ANH). A total of 512 biopsies randomly selected from a ground total of 3310 biopsies, which were submitted for oral and maxillofacial histopathological specimens, were analyzed at Nahdha Hospital in Oman between January 2010 and December 2022. Data collected retrospectively selected from all case notes of patients who had oral histopathology examinations performed as part of their treatment. Data collected from the Shifa system was transferred to Microsoft Excel and analyzed using SPSS. Research ethics approval was obtained from the research committee of the hospital. This study provides background information on oral histopathology prevalence that could be helpful in future research in Oman. The findings of the present study are in agreement with the reported data from other investigations, even when it is taken into account how difficult it is to compare prevalence rates from different studies.Keywords: oral biopsy, maxillofacial histopathology, oral disease, maxillofacial specimens
Procedia PDF Downloads 75