Search results for: surface movement
2056 Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube
Authors: Mesbah. M. Salem, Mohamed. H. Elhsnawi, Saleh B. Mohamed
Abstract:
An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.
Keywords: Pressure drop, heat transfer, distilled water, R134a, micro-tube, laminar and turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38582055 Inventing a Method of Problem Solving: The Natural Movement of the Mind to Solve a Problem
Authors: Amir Farkhonde
Abstract:
The major objective of this study was to devise a method for solving mathematical problems. Three concepts including faculty of understanding, faculty of guess, and free mind or beginner's mind provided the foundation for this method. An explanatory approach along with a hermeneutic process was taken in this study to support the assumption that mathematical knowledge is constantly developing and it seems essential for students to solve math problems on their own using their faculty of understanding (interpretive dialogue) and faculty of guess. For doing so, a kind of movement from the mathematical problem to mathematical knowledge should be adopted for teaching students a new math topic. The research method of this paper is review, descriptive and conception development. This paper first reviews the research findings on the NRICH’S project (NRICH is part of the family of activities in the Millennium Mathematics Project) with the aim that these findings form the theoretical basis of the problem-solving method. Then, the curriculum, the conceptual structure of the new method, how to design the problem and an example of it are discussed. In this way, students are immersed in the story of discovering and understanding the problem formula, and interpretive dialogue with the text continues by following the questions posed by the problem and constantly reconstructing the answer to find a formula or solution to solve the problem.
Keywords: Interpretive dialogue, NRICH, inventing, a method of problem solving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642054 Experimental Study on Slicing of Sapphire with Fixed Abrasive Diamond Wire Saw
Authors: Mengjun Zhang, Yuli Sun, Dunwen Zuo, Chunxiang Xie, Chunming Zhang
Abstract:
Experimental study on slicing of sapphire with fixed abrasive diamond wire saw was conducted in this paper. The process parameters were optimized through orthogonal experiment of three factors and four levels. The effects of wire speed, feed speed and tension pressure on the surface roughness were analyzed. Surface roughness in cutting direction and feed direction were both detected. The results show that feed speed plays the most significant role on the surface roughness of sliced sapphire followed by wire speed and tension pressure. The optimized process parameters are as follows: wire speed 1.9 m/s, feed speed 0.187 mm/min and tension pressure 0.18 MPa. In the end, the results were verified by analysis of variance.
Keywords: Fixed abrasive, diamond wire saw, slicing, sapphire, orthogonal experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31572053 Miocene Warm Tropical Climate: Evidence Based on Oxygen Isotope in Central Java, Indonesia
Authors: Akmaluddin, Koichiro Watanabe, Akihiro Kano, Wartono Rahardjo
Abstract:
Oxygen and carbon isotopes records of multi-species planktonic, benthic foraminifera and bulk carbonate sample from Central Java Indonesia demonstrate that warm sea surface temperature occurred during the Miocene. Planktonic δ18O values from this study consistently lighter (-4 to -3 ‰PDB) than previous studies that indicate sea surface temperature during Miocene in this area was warm than tropical/equatorial localities. A surprising decrease of oxygen isotopic composition was recorded at ±14 Ma where the maximum of δ18O values is -4.87 ‰PDB for Orbulina universa, -5.02 ‰PDB for Globigerinoides sacculifer and -4.30 ‰PDB for Globoquadrina dehiscens, this event we predict as Middle Miocene Optimum. Warming of sea surface temperature we interpret as related to the development of Western Pacific Warm Pool where warm water from Pacific Ocean through the Indonesian seaway appears to remain during Miocene. Our result also show increasing suddenly of oxygen isotope values of planktic, benthic and bulk carbonate sample from ± 12 Ma, the increasing cooled surface water relatively high degree with Late Miocene global cooling climate or we predict that due to closing of Indonesian Gateway.
Keywords: Oxygen isotope, Foraminifera, Miocene, Paleoclimate, Indonesian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16552052 3D Shape Knitting: Loop Alignment on a Surface with Positive Gaussian Curvature
Authors: C. T. Cheung, R. K. P. Ng, T. Y. Lo, Zhou Jinyun
Abstract:
This paper aims at manipulating loop alignment in knitting a three-dimensional (3D) shape by its geometry. Two loop alignment methods are introduced to handle a surface with positive Gaussian curvature. As weft knitting is a two-dimensional (2D) knitting mechanism that the knitting cam carrying the feeders moves in two directions only, left and right, the knitted fabric generated grows in width and length but not in depth. Therefore, a 3D shape is required to be flattened to a 2D plane with surface area preserved for knitting. On this flattened plane, dimensional measurements are taken for loop alignment. The way these measurements being taken derived two different loop alignment methods. In this paper, only plain knitted structure was considered. Each knitted loop was taken as a basic unit for loop alignment in order to achieve the required geometric dimensions, without the inclusion of other stitches which give textural dimensions to the fabric. Two loop alignment methods were experimented and compared. Only one of these two can successfully preserve the dimensions of the shape.Keywords: 3D knitting, 3D shape, loop alignment, positive Gaussian curvature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15492051 Enhanced Quality of Zeolite LSX: Studying Effect of Crystallized Containers
Authors: Jitlada Chumee
Abstract:
Low silica type X (LSX) Zeolite is one of useful material in many manufacturing due to the advantage properties including high surface area, stability, microporous crystalline aluminosilicates and positive ion in an extra–framework. The LSX was used rice husk silica source which obtained by leaching with hydrochloric acid and calcination at 500C. To improve the synthesis method, the LSX was crystallizated in Teflon–lined autoclave will expedite deceasing of the amorphous particles. The mixed gel with composition of 5.5 Na2O : 1.65 K2O : Al2O3 : 2.2 SiO2 : 122 H2O was crystallized in different container (Polypropylene bottom and Teflon–lined autoclave). The obtained powder was characterized by X–ray diffraction (XRD), X–ray fluorescence spectrometry, N2 adsorption-desorption analysis BET surface area Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy to justify the quality of zeolite. The results showed the crystallized zeolite in Teflon lined autoclave has 102.8 nm of crystal size, 286 m2/g of surface area and fewer amounts of round amorphous particles when compared with the crystallized zeolite in Polypropylene.Keywords: LSX Zeolite, rice husk and crystallized container.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26372050 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance
Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison
Abstract:
Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19912049 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface
Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L.-C. Hsu
Abstract:
In this paper a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.
Keywords: Aerostatic, bearing, elastomer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19222048 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles
Authors: Mirigul Altan, Huseyin Yildirim
Abstract:
Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38992047 Research on the Influence of Emotional Labor Strategy used by Public Transportation Employee on Service Satisfaction
Authors: Ming-Hsiung Wu, Yu-Hsi Yuan
Abstract:
The aim of the research is to understand whether the accuracy of customer detection of employee emotional labor strategy would influence the overall service satisfaction. From path analysis, it was found that employee-s positive emotions positively influenced service quality. Service quality in turn influenced Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy. Lastly, Customer detection of employee emotional deep action strategy and Customer detection of employee emotional surface action strategy positively influenced service satisfaction. Based on the analysis results, suggestions are proposed to provide reference for human resource management and use in relative fields.
Keywords: Emotional labor, Emotional deep action strategy, Emotional surface action strategy, Service satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15992046 Effect of CW Laser Annealing on Silicon Surface for Application of Power Device
Authors: Satoru Kaneko, Takeshi Ito, Kensuke Akiyama, Manabu Yasui, Chihiro Kato, Satomi Tanaka, Yasuo Hirabayashi, Takeshi Ozawa, Akira Matsuno, Takashi Nire, Hiroshi Funakubo, Mamoru Yoshimoto
Abstract:
As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.Keywords: laser, annealing, silicon, recrystallization, thermal distribution, resistivity, finite element method, absorption, melting point, latent heat of fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28932045 Optimization of Growth of Rhodobacter Sphaeroides Using Mixed Volatile Fatty Acidsby Response Surface Methodology
Authors: R.Sangeetha, T.Karunanithi
Abstract:
A combination of photosynthetic bacteria along with anaerobic acidogenic bacteria is an ideal option for efficient hydrogen production. In the present study, the optimum concentration of substrates for the growth of Rhodobacter sphaeroides was found by response surface methodology. The optimum combination of three individual fatty acids was determined by Box Behnken design. Increase of volatile fatty acid concentration decreased the growth. Combination of sodium acetate and sodium propionate was most significant for the growth of the organism. The results showed that a maximum biomass concentration of 0.916 g/l was obtained when the concentrations of acetate, propionate and butyrate were 0.73g/l,0.99g/l and 0.799g/l, respectively. The growth was studied under an optimum concentration of volatile fatty acids and at a light intensity of 3000 lux, initial pH of 7 and a temperature of 35°C.The maximum biomass concentration of 0.92g/l was obtained which verified the practicability of this optimization.Keywords: Biohydrogen, Response Surface Methodology, Rhodobacter sphaeroides, Volatile fatty acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21502044 Fabrication and Study of Nickel Phthalocyanine based Surface Type Capacitive Sensors
Authors: Mutabar Shah, Muhammad Hassan Sayyad, Khasan S. Karimov
Abstract:
Thin films of Nickel phthalocynine (NiPc) of different thicknesses (100, 150 and 200 nm) were deposited by thermal evaporator on glass substrates with preliminary deposited aluminum electrodes to form Al/NiPc/Al surface-type capacitive humidity sensors. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. It was observed that the capacitance value increases nonlinearly with increasing humidity level. All measurements were taken at room temperature.Keywords: Capacitive sensor, Humidity, Nickel phthalocyanine, Organic semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17962043 Analysis of Wave Propagation in Two-dimensional Phononic Crystals with Hollow Cylinders
Authors: Zi-Gui Huang, Tsung-Tsong Wu
Abstract:
Large full frequency band gaps of surface and bulk acoustic waves in two-dimensional phononic band structures with hollow cylinders are addressed in this paper. It is well-known that absolute frequency band gaps are difficultly obtained in a band structure consisted of low-acoustic-impedance cylinders in high-acoustic-impedance host materials such as PMMA/Ni band structures. Phononic band structures with hollow cylinders are analyzed and discussed to obtain large full frequency band gaps not only for bulk modes but also for surface modes. The tendency of absolute frequency band gaps of surface and bulk acoustic waves is also addressed by changing the inner radius of hollow cylinders in this paper. The technique and this kind of band structure are useful for tuning the frequency band gaps and the design of acoustic waveguides.Keywords: Phononic crystals, Band gap, SAW, BAW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19932042 Roundness Deviation Measuring Strategy at Coordination Measuring Machines and Conventional Machines
Authors: Lenka Ocenasova, Bartosz Gapinski, Robert Cep, Linda Gregova, Branimir Barisic, Jana Novakova, Lenka Petrkovska
Abstract:
Today technological process makes possible surface control of producing parts which is needful for product quality guarantee. Geometrical structure of part surface includes form, proportion, accuracy to shape, accuracy to size, alignment and surface topography (roughness, waviness, etc.). All these parameters are dependence at technology, production machine parameters, material properties, but also at human, etc. Every parameters approves at total part accuracy, it is means at accuracy to shape. One of the most important accuracy to shape element is roundness. This paper will be deals by comparison of roughness deviations at coordination measuring machines and at special single purpose machines. Will describing measuring by discreet method (discontinuous) and scanning method (continuous) at coordination measuring machines and confrontation with reference method using at single purpose machines.Keywords: Coordinating Measuring Machines (CMM), Measuring Strategy, Roughness Deviation, Accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23762041 Tool Damage and Adhesion Effects in Turning and Drilling of Hardened Steels
Authors: Chris M. Taylor, Ian Cook, Raul Alegre, Pedro Arrazola, Phil Spiers
Abstract:
Noteworthy results have been obtained in the turning and drilling of hardened high-strength steels using tungsten carbide based cutting tools. In a finish turning process, it was seen that surface roughness and tool flank wear followed very different trends against cutting time. The suggested explanation for this behaviour is that the profile cut into the workpiece surface is determined by the tool’s cutting edge profile. It is shown that the profile appearing on the cut surface changes rapidly over time, so the profile of the tool cutting edge should also be changing rapidly. Workpiece material adhered onto the cutting tool, which is also known as a built-up edge, is a phenomenon which could explain the observations made. In terms of tool damage modes, workpiece material adhesion is believed to have contributed to tool wear in examples provided from finish turning, thread turning and drilling. Additionally, evidence of tool fracture and tool abrasion were recorded.Keywords: Turning, drilling, adhesion, wear, hard steels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14272040 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change
Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert
Abstract:
Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.
Keywords: Climate change, renewable energy, solar, trends, research, SPI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11662039 Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils
Authors: H. Taheri Shahraiyni, B. Ataie Ashtiani
Abstract:
Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.Keywords: Finite Difference methods, Richards equation, fullyimplicit, Crank-Nicolson, Runge-Kutta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23812038 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19192037 Surface Water Flow of Urban Areas and Sustainable Urban Planning
Authors: Sheetal Sharma
Abstract:
Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.
Keywords: Runoff, built up, roughness, recharge, temporal changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14612036 Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction
Authors: C. Thongsopa, P. Sukphongchirakul, A. Intarapanich, P. Jarataku
Abstract:
Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.Keywords: Wave propagation, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17602035 3D Model Retrieval based on Normal Vector Interpolation Method
Authors: Ami Kim, Oubong Gwun, Juwhan Song
Abstract:
In this paper, we proposed the distribution of mesh normal vector direction as a feature descriptor of a 3D model. A normal vector shows the entire shape of a model well. The distribution of normal vectors was sampled in proportion to each polygon's area so that the information on the surface with less surface area may be less reflected on composing a feature descriptor in order to enhance retrieval performance. At the analysis result of ANMRR, the enhancement of approx. 12.4%~34.7% compared to the existing method has also been indicated.Keywords: Interpolated Normal Vector, Feature Descriptor, 3DModel Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14772034 Mathematical Expression for Machining Performance
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.
Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7342033 Methods of Geodesic Distance in Two-Dimensional Face Recognition
Authors: Rachid Ahdid, Said Safi, Bouzid Manaut
Abstract:
In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.
Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18182032 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling
Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang
Abstract:
In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.
Keywords: Glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28022031 Neuroblasts Micropatterning on Nanostructural Modified Chitosan Membranes
Authors: Chun-Yen Sung, Chung-Yao Yang, Tzu-Chun Liao, Wen-Shiang Chen, Chao-Min Cheng, J. Andrew Yeh
Abstract:
The study describes chitosan membrane platform modified with nanostructure pattern which using nanotechnology to fabricate. The cell-substrate interaction between neuro-2a neuroblasts cell lines and chitosan membrane (flat, nanostructure and nanostructure pattern types) was investigated. The adhered morphology of neuro-2a cells depends on the topography of chitosan surface. We have found that neuro-2a showed different morphogenesis when cells adhered on flat and nanostructure chitosan membrane. The cell projected area of neuro-2a on flat chitosan membrane is larger than on nanostructure chitosan membrane. In addition, neuro-2a cells preferred to adhere on flat chitosan surface region than on nanostructure chitosan membrane to immobilize and differentiation. The experiment suggests surface topography can be used as a critical mechanism to isolate group of neuro-2a to a particular rectangle area on chitosan membrane. Our finding will provide a platform to take patch clamp to record electrophysiological behavior about neurons in vitro in the future.Keywords: Chitosan membrane, neuro-2a, wet chemical etching, solvent casting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622030 Effect of Sensory Manipulations on Human Joint Stiffness Strategy and Its Adaptation for Human Dynamic Stability
Authors: Aizreena Azaman, Mai Ishibashi, Masanori Ishizawa, Shin-Ichiroh Yamamoto
Abstract:
Sensory input plays an important role to human posture control system to initiate strategy in order to counterpart any unbalance condition and thus, prevent fall. In previous study, joint stiffness was observed able to describe certain issues regarding to movement performance. But, correlation between balance ability and joint stiffness is still remains unknown. In this study, joint stiffening strategy at ankle and hip were observed under different sensory manipulations and its correlation with conventional clinical test (Functional Reach Test) for balance ability was investigated. In order to create unstable condition, two different surface perturbations (tilt up-tilt (TT) down and forward-backward (FB)) at four different frequencies (0.2, 0.4, 0.6 and 0.8 Hz) were introduced. Furthermore, four different sensory manipulation conditions (include vision and vestibular system) were applied to the subject and they were asked to maintain their position as possible. The results suggested that joint stiffness were high during difficult balance situation. Less balance people generated high average joint stiffness compared to balance people. Besides, adaptation of posture control system under repetitive external perturbation also suggested less during sensory limited condition. Overall, analysis of joint stiffening response possible to predict unbalance situation faced by human
Keywords: Balance ability, joint stiffness, sensory, adaptation, dynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19552029 The Self-Propelled Model of a Boat, Based on the Wave Thrust
Authors: V. Arabadzhi
Abstract:
We attempted investigate a boat model, based on the conversion of energy of surface wave into a sequence of unidirectional pulses of jet spurts, in other words - model of the boat, which is thrusting by the waves field on water surface. These pulses are forming some average reactive stream from the output nozzle on the stern of boat. The suggested model provides the conversion of its oscillatory motions (both pitching and rolling) into a jet flow. This becomes possible due to special construction of the boat and due to several details, sensitive to the local wave field. The boat model presents the uniflow jet engine without slow conversions of mechanical energy into intermediate forms and without any external sources of energy (besides surface waves). Motion of boat is characterized by fast jerks and average onward velocity, which exceeds the velocities of liquid particles in the wave.Keywords: Flat-bottomed boat, Underwater wing, Input and output nozzles, Wave thrust, Conversion of wave into a jet stream, Oscillatory motion and onward motion, Squid-like pump, Hatch-like pump, The thrust due to lifting float, The thrust due to radiation reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18442028 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations
Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia
Abstract:
Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15682027 The Role of Ga to Improve AlN-Nucleation Layer for Al0.1Ga0.9N/Si(111)
Authors: AlNPhannee Saengkaew, Armin Dadgar, Juergen Blaesing, Thomas Hempel, Sakuntam Sanorpim, Chanchana Thanachayanont, Visittapong Yordsri, Watcharee Rattanasakulthong, Alois Krost
Abstract:
Group-III nitride material as particularly AlxGa1-xN is one of promising optoelectronic materials to require for shortwavelength devices. To achieve the high-quality AlxGa1-xN films for a high performance of such devices, AlN-nucleation layers are the important factor. To improve the AlN-nucleation layers with a variation of Ga-addition, XRD measurements were conducted to analyze the crystalline quality of the subsequent Al0.1Ga0.9N with the minimum ω-FWHMs of (0002) and (10-10) reflections of 425 arcsec and 750 arcsec, respectively. SEM and AFM measurements were performed to observe the surface morphology and TEM measurements to identify the microstructures and orientations. Results showed that the optimized Ga-atoms in the Al(Ga)Nnucleation layers improved the surface diffusion to form moreuniform crystallites in structure and size, better alignment of each crystallite, and better homogeneity of island distribution. This, hence, improves the orientation of epilayers on the Si-surface and finally improves the crystalline quality and reduces the residual strain of subsequent Al0.1Ga0.9N layers.Keywords: AlGaN, UV-LEDs, seed layers, AFM, TEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579