Methods of Geodesic Distance in Two-Dimensional Face Recognition
Authors: Rachid Ahdid, Said Safi, Bouzid Manaut
Abstract:
In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.
Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109323
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819References:
[1] C. Samir, A. Srivastava, M. Daoudi: “Three-dimensional face recognition using shapes of facial curves”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1847–1857, (2006).
[2] L. Ballihi, B. Ben Amor, M. Daoudi, A. Srivastava, D. Aboutajdine: Sélection de courbes de la surface nasale pour l’authentification de personnes en utilisant Adaboost. hal-00666262, version 1 - 3 Feb 2012.
[3] M. Turk and A. Pentland, “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol 3no 1, pp. 71-86. 1991.
[4] J. Yang., D. Zhang and D. Frangi: “Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition”, IEEE Trans On PAMI, 26(1), pp: 131-137, 2004.
[5] P. Yan, K.W. Bowyer: “Biometric recognition using 3D ear shape”. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 8, pp. 1297–1308. (2007).
[6] H. Chen, B. Bhanu: Human ear recognition in 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 4, pp. 718–737. (2007).
[7] M. Visani., C. Garcia and J.M. Jolion., “Two- Dimensional-Oriented Linear Discriminant Analysis for Face Recognition,” Proc. of the Int. Conf. On Computer Vision and Graphics ICCVG’04, dans la srie Computational Imaging and Vision, Varsovie, Pologne, 2004.
[8] H. Cevikalp., M. Neamtu., M. Wilkes, A. Barkana.: Discriminative common vectors for face recognition. IEEE Trans. Pattern Anal. Machine Intell. 27 (1), 4–13. 2005.
[9] M. Belahcene., A. Ouamane., M. Boumehrez., and A. Benakcha., ”Comparaison des mthodes de rduction d’espace et l’application des SVMS pour la classification dans l’authentification de visages,” COURRIER DU SAVOIR, pp. 117-126, 2012.
[10] J. Lu, J., N. P. Kostantinos, N. V. Anastasios: “Face recognition using LDA-based algorithms”. IEEE Trans. Neural Networks 14 (1), 195–200. 2003.
[11] B.A. Draper, K. Baek, M.S. Bartlett, J.R. Beveridge, “Recognizing Faces with PCA and ICA,” Computer Vision and Image Understanding: special issue on face recognition, in press, pp. 115-137, 2003.
[12] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski, “Face Recognition by Independent Component Analysis,” IEEE Trans. Neural Networks, vol. 13, no. 6, pp. 1450-1464, 2002.
[13] W. Xu and E. J. Lee, “Face Recognition Using Wavelets Transform and 2D PCA by SVM Classifier”, International Journal of Multimedia and Ubiquitous Engineering, Vol.9, No.3, pp.281 -290, (2014).
[14] K. I. Kim., K. Jung., and J. Kim., ”Face recognition using support vector machines with local correlation kernels,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 16 no. 1, pp. 97- 111, 2002.
[15] G.D. Guo, H.J. Zhang, and S.Z. Li., ”Pairwise face recognition,” in Proceedings of 8th IEEE International Conference on Computer Vision. Vancouver, Canada, July 9-12, 2001.
[16] F. Salimi., M. Sadeghi., M. S. Moin and J. Kittler., “Face Verification Using Colour Kernels,” Springer-Verlag Berlin Heidelberg, pp. 522-531, 2009.
[17] M. Agarwal, N. Jain, M. Kumar and H. Agrawal, “Face Recognition Using Eigen Faces and Artificial Neural Network”, International Journal of Computer Theory and Engineering, Vol. 2, No. 4, August, 1793-8201, 2010.
[18] V. More and A. Wagh, “Improved Fisher Face Approach for Human Recognition System using Facial Biometrics”, International Journal of Information and Communication Technology Research, Volume 2 No. 2, February 2012.
[19] L. Chen, H. Liao, M. Ko, J. Lin and G. Yu. A new LDA-based face recognition system which can solve the small sample size problem. In IEEE Pattern Recognition 33 (10), 2000.
[20] A. Nefian and M. Hayes, ” An embedded hmm-based approach for face detection and recognition,” In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6, pp. 3553–3556, 1999.
[21] R. Kimmel and J. A. Sethian, “Computing geodesic on manifolds,” in Proc. US National Academy of Science, 1998, vol. 95, pp. 8431–8435. 1998.
[22] X. Desquesnes, A. Elmoataz, O. Lézoray: “Eikonal equation adaptation on weighted graphs: fast geometric diffusion process for local and non - local image and data processing”. Journal of Mathematical Imaging and Vision 46, 2 (2013), pp. 238-257, 2014.
[23] E. Carlini, M. Falcone, N. Forcadel, R. Monneau: “Convergence of a generalized fast-marching method for an eikonal equation with a velocity-changing sign”. SIAM J. Numer. Anal. 46, 2920– 2952 (2008).
[24] E.W. Dijkstra, A Note on Two Problems in Connection with Graphs, Numerische Mathematik, 1 (1959), pp. 269–271, 1959.
[25] A. M.Bronstein, M. M. Bronstein, E. Gordon, R. Kimmel: “Fusion of 2D and 3D Data in Three-Dimensional Face Recognition”. Image Processing, 2004. ICIP '04. 2004 International Conference on (Volume: 1), IEEE, p.p: 87 - 90. (2004).
[26] A. M.Bronstein, M. M. Bronstein, A. Spira, R. Kimmel: “Face Recognition from Facial Surface Metric”, Lecture Notes in Computer Science Volume 3022, 2004, Springer Berlin Heidelberg, p.p: 225-237. (2004).
[27] R. Ahdid., S. Safi and B. Manaut, “Approach of Facial Surfaces by Contour,” IEEE Xplore, International Conference Multimedia Computing and Systems (ICMCS), pp: 465-468, (2014).
[28] H. Ling and D. Jacobs. Deformation invariant image matching. In ICCV, 2005.
[29] S. Miao, H. Krim: “3D Face Recognition Based on Evolution of Iso- Geodesic Distance Curves”, Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp: 1134 – 1137. 2010.
[30] S. Jahanbin, H. Choi, Y. Liu, A. C. Bovik: “Three Dimensional Face Recognition Using Iso-Geodesic and Iso-Depth Curves”, Biometrics: Theory, Applications and Systems, 2008. BTAS 2008. 2nd IEEE International Conference on, pp: 1-6. 2008.
[31] L. Ballihi, A. Srivastava, B. B. Amor, M. Daoudi, D. Aboutajdine: “Which 3D geometric facial features give up your identity?”, ICB 2012, pp: 119-124. 2012.
[32] L. Ballihi, B. B. Amor, M. Daoudi, A. Srivastava, D. Aboutajdine: “Boosting 3-D-Geometric Features for Efficient Face Recognition and Gender Classification”. IEEE Transactions on Information Forensics and Security 7(6), pp: 1766-1779. 2012.
[33] E. Klassen and A. Srivastava, Geodesics Between 3D Closed Curves Using Path Straightening, Proceedings of ECCV, Lecture Notes in Computer Science, 2006, p. 95-106. Springer Berlin Heidelberg. 2006.
[34] S. Joshi, E. Klassen, A. Srivastava, and I. Jermyn: “An Efficient Representation for Computing Geodesics between n-Dimensional Elastic Shapes”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.
[35] A. Maalej, B. Ben Amor, M. Daoudi, A. Srivastava, S. Berretti: “Shape analysis of local facial patches for 3D facial expression recognition”. Pattern Recognition (Volume 44, Issue 8), pp: 1581- 1589 (2011).
[36] R. Ahdid, S. Safi and B. Manaut: “Three Dimensional Face Surfaces Analysis using Geodesic Distance”, Journal of Computer Sciences and Applications, (Volume 3, Issue 3), pp: 67-72. (2015).