Search results for: G.H.Farrahi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: G.H.Farrahi

2 A New Analytical Approach to Reconstruct Residual Stresses Due to Turning Process

Authors: G.H. Farrahi, S.A. Faghidian, D.J. Smith

Abstract:

A thin layer on the component surface can be found with high tensile residual stresses, due to turning operations, which can dangerously affect the fatigue performance of the component. In this paper an analytical approach is presented to reconstruct the residual stress field from a limited incomplete set of measurements. Airy stress function is used as the primary unknown to directly solve the equilibrium equations and satisfying the boundary conditions. In this new method there exists the flexibility to impose the physical conditions that govern the behavior of residual stress to achieve a meaningful complete stress field. The analysis is also coupled to a least squares approximation and a regularization method to provide stability of the inverse problem. The power of this new method is then demonstrated by analyzing some experimental measurements and achieving a good agreement between the model prediction and the results obtained from residual stress measurement.

Keywords: Residual stress, Limited measurements, Inverse problems, Turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
1 Laser Surface Hardening Considering Coupled Thermoelasticity using an Eulerian Formulations

Authors: Me. Sistaninia, G.H.Farrahi, Ma. Sistaninia

Abstract:

Thermoelastic temperature, displacement, and stress in heat transfer during laser surface hardening are solved in Eulerian formulation. In Eulerian formulations the heat flux is fixed in space and the workpiece is moved through a control volume. In the case of uniform velocity and uniform heat flux distribution, the Eulerian formulations leads to a steady-state problem, while the Lagrangian formulations remains transient. In Eulerian formulations the reduction to a steady-state problem increases the computational efficiency. In this study also an analytical solution is developed for an uncoupled transient heat conduction equation in which a plane slab is heated by a laser beam. The thermal result of the numerical model is compared with the result of this analytical model. Comparing the results shows numerical solution for uncoupled equations are in good agreement with the analytical solution.

Keywords: Coupled thermoelasticity, Finite element, Laser surface hardening, Eulerian formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564