Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33126
Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061890
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925References:
[1] V. Vapnik, Statistical Learning Theory, Wiley, 1998.
[2] H. Jia, Y. L. Murphey, J. Shi, T. Chang, "An intelligent real-time vision system for surface defect detection", Proceedings of the 17th International Conference on Pattern Recognition, 2004. 239 - 242
[3] K. Choi, K. Koo, J. S. Lee, "Development of defect classification algorithm for POSCO rolling strip surface inspection system", International Joint Conference SICE-ICASE, 2006. 2499 - 2502
[4] S. Knerr, L. Personnaz, G. Dreyfuss, "Single-layer learning revisited: a stepwise procedure for building and training a neural network", In Neurocomputing: Algorithm, Architectures and Applications (1990), p. 41 - 50.
[5] C. Hsu, C. Lin, "A Comparison of methods for multiclass support vector machines", IEEE Transactions on Neural Networks, 2002. 415 - 425
[6] S. Theodoridis and K. Koutroumbas. Pattern Recognition. 3rd Edition, Academic Press, 2006.
[7] C. Shi, Y. Wang, H. Zhang, "Faults diagnosis based on support vector machines and particle swarm optimization", International Journal of Advancements in Computing Technology, Vol. 3, No. 5, pp. 70 ~ 79, 2011.
[8] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004.