Search results for: a method of problem solving.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10476

Search results for: a method of problem solving.

10476 Inventing a Method of Problem Solving: The Natural Movement of the Mind to Solve a Problem

Authors: Amir Farkhonde

Abstract:

The major objective of this study was to devise a method for solving mathematical problems. Three concepts including faculty of understanding, faculty of guess, and free mind or beginner's mind provided the foundation for this method. An explanatory approach along with a hermeneutic process was taken in this study to support the assumption that mathematical knowledge is constantly developing and it seems essential for students to solve math problems on their own using their faculty of understanding (interpretive dialogue) and faculty of guess. For doing so, a kind of movement from the mathematical problem to mathematical knowledge should be adopted for teaching students a new math topic. The research method of this paper is review, descriptive and conception development. This paper first reviews the research findings on the NRICH’S project (NRICH is part of the family of activities in the Millennium Mathematics Project) with the aim that these findings form the theoretical basis of the problem-solving method. Then, the curriculum, the conceptual structure of the new method, how to design the problem and an example of it are discussed. In this way, students are immersed in the story of discovering and understanding the problem formula, and interpretive dialogue with the text continues by following the questions posed by the problem and constantly reconstructing the answer to find a formula or solution to solve the problem.

Keywords: Interpretive dialogue, NRICH, inventing, a method of problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
10475 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem

Authors: H. Taghvafard, G. H. Erjaee

Abstract:

A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
10474 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
10473 Production Plan and Technological Variants Optimization by Goal Programming Methods

Authors: Tunjo Perić, Franjo Bratić

Abstract:

In this paper, the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodology compare to the Surrogat Worth Trade-off method in solving this problem.

Keywords: Goal programming, multi objective programming, production plan, SWT method, technological variants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
10472 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem

Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom

Abstract:

This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.

Keywords: PSO, SA, N-queen, CSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
10471 The Effect of Peer Support to Interpersonal Problem Solving Tendencies and Skills in Nursing Students

Authors: B. Özlük, A. Karaaslan

Abstract:

This study has been conducted as a supplementary and relationship seeking study with the purpose of measuring the tendency and success of support among peers amid nursing students studying at university in solving interpersonal problems. The population of the study (N:279) is comprised of nursing students who are studying at one state and one private university in the province of Konya, while its sample is comprised of 231 nursing students who agreed to take part in the study voluntarily. As a result of this study, it has been determined that the peer support and interpersonal problem solving characteristics among students were at medium levels and that the interpersonal problem solving skills of students studying in the third year were higher than those of first and second year students. While the interpersonal problem solving characteristics of students who are aged 20 and over were found to be higher, no difference could be determined in terms of the interpersonal problem solving skills and tendencies among students, based on their gender and where they reside. A positive – to a medium degree – and significant relationship was determined between peer support and interpersonal problem solving skills, and it is possible to say that as peer support increases, so do the skills and tendencies to solve problems.

Keywords: Interpersonal problem, nursing students, peer support, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
10470 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
10469 Limits Problem Solving in Engineering Careers: Competences and Errors

Authors: Veronica Diaz Quezada

Abstract:

In this article, the performance and errors are featured and analysed in the limit problems solving of a real-valued function, in correspondence to competency-based education in engineering careers, in the south of Chile. The methodological component is contextualised in a qualitative research, with a descriptive and explorative design, with elaboration, content validation and application of quantitative instruments, consisting of two parallel forms of open answer tests, based on limit application problems. The mathematical competences and errors made by students from five engineering careers from a public University are identified and characterized. Results show better performance only to solve routine-context problem-solving competence, thus they are oriented towards a rational solution or they use a suitable problem-solving method, achieving the correct solution. Regarding errors, most of them are related to techniques and the incorrect use of theorems and definitions of real-valued function limits of real variable.

Keywords: Engineering education, errors, limits, mathematics competences, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
10468 Simplex Method for Fuzzy Variable Linear Programming Problems

Authors: S.H. Nasseri, E. Ardil

Abstract:

Fuzzy linear programming is an application of fuzzy set theory in linear decision making problems and most of these problems are related to linear programming with fuzzy variables. A convenient method for solving these problems is based on using of auxiliary problem. In this paper a new method for solving fuzzy variable linear programming problems directly using linear ranking functions is proposed. This method uses simplex tableau which is used for solving linear programming problems in crisp environment before.

Keywords: Fuzzy variable linear programming, fuzzy number, ranking function, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295
10467 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems

Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar

Abstract:

In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.

Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
10466 Using Hermite Function for Solving Thomas-Fermi Equation

Authors: F. Bayatbabolghani, K. Parand

Abstract:

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
10465 A Dual Method for Solving General Convex Quadratic Programs

Authors: Belkacem Brahmi, Mohand Ouamer Bibi

Abstract:

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.

Keywords: Convex quadratic programming, dual support methods, active set methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
10464 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam

Abstract:

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Keywords: Error correcting output code, combining classifiers, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
10463 Research on Self-Perceptions of Pre-Service Turkish Language Teachers in Turkey with Regard to Problem Solving Skills

Authors: Canan Aslan

Abstract:

The aim of this research is to determine how preservice Turkish teachers perceive themselves in terms of problem solving skills. Students attending Department of Turkish Language Teaching of Gazi University Education Faculty in 2005-2006 academic year constitute the study group (n= 270) of this research in which survey model was utilized. Data were obtained by Problem Solving Inventory developed by Heppner & Peterson and Personal Information Form. Within the settings of this research, Cronbach Alpha reliability coefficient of the scale was found as .87. Besides, reliability coefficient obtained by split-half technique which splits odd and even numbered items of the scale was found as r=.81 (Split- Half Reliability). The findings of the research revealed that preservice Turkish teachers were sufficiently qualified on the subject of problem solving skills and statistical significance was found in favor of male candidates in terms of “gender" variable. According to the “grade" variable, statistical significance was found in favor of 4th graders.

Keywords: Problem Solving, problem solving skills, PreserviceTurkish Language Teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
10462 Two-Stage Approach for Solving the Multi-Objective Optimization Problem on Combinatorial Configurations

Authors: Liudmyla Koliechkina, Olena Dvirna

Abstract:

The statement of the multi-objective optimization problem on combinatorial configurations is formulated, and the approach to its solution is proposed. The problem is of interest as a combinatorial optimization one with many criteria, which is a model of many applied tasks. The approach to solving the multi-objective optimization problem on combinatorial configurations consists of two stages; the first is the reduction of the multi-objective problem to the single criterion based on existing multi-objective optimization methods, the second stage solves the directly replaced single criterion combinatorial optimization problem by the horizontal combinatorial method. This approach provides the optimal solution to the multi-objective optimization problem on combinatorial configurations, taking into account additional restrictions for a finite number of steps.

Keywords: Discrete set, linear combinatorial optimization, multi-objective optimization, multipermutation, Pareto solutions, partial permutation set, permutation, structural graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 606
10461 Fuzzy Shortest Paths Approximation for Solving the Fuzzy Steiner Tree Problem in Graphs

Authors: Miloš Šeda

Abstract:

In this paper, we deal with the Steiner tree problem (STP) on a graph in which a fuzzy number, instead of a real number, is assigned to each edge. We propose a modification of the shortest paths approximation based on the fuzzy shortest paths (FSP) evaluations. Since a fuzzy min operation using the extension principle leads to nondominated solutions, we propose another approach to solving the FSP using Cheng's centroid point fuzzy ranking method.

Keywords: Steiner tree, single shortest path problem, fuzzyranking, binary heap, priority queue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
10460 Numerical Solving of General Fuzzy Linear Systems by Huang's Method

Authors: S. J. Hosseini Ghoncheh, M. Paripour

Abstract:

In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.

Keywords: Fuzzy number, fuzzy linear systems, Huang's method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
10459 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)

Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim

Abstract:

In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. These solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.

Keywords: Embedded Runge-Kutta-Fehlberg method, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
10458 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F

Authors: Fatemeh Panjeh Ali Beik

Abstract:

In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.

Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
10457 A Method for Solving a Bi-Objective Transportation Problem under Fuzzy Environment

Authors: Sukhveer Singh, Sandeep Singh

Abstract:

A bi-objective fuzzy transportation problem with the objectives to minimize the total fuzzy cost and fuzzy time of transportation without according priorities to them is considered. To the best of our knowledge, there is no method in the literature to find efficient solutions of the bi-objective transportation problem under uncertainty. In this paper, a bi-objective transportation problem in an uncertain environment has been formulated. An algorithm has been proposed to find efficient solutions of the bi-objective transportation problem under uncertainty. The proposed algorithm avoids the degeneracy and gives the optimal solution faster than other existing algorithms for the given uncertain transportation problem.

Keywords: Transportation problem, efficient solution, ranking function, fuzzy transportation problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
10456 Solving the Economic Dispatch Problem by Using Differential Evolution

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
10455 Augmented Reality for Maintenance Operator for Problem Inspections

Authors: Chong-Yang Qiao, Teeravarunyou Sakol

Abstract:

Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.

Keywords: Augmented reality, situation awareness, decision-making, problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
10454 P-ACO Approach to Assignment Problem in FMSs

Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh

Abstract:

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
10453 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
10452 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations

Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov

Abstract:

Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.

Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
10451 Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem

Authors: Ruskartina Eki, Vincent F. Yu, Santosa Budi, A. A. N. Perwira Redi

Abstract:

This paper introduces symbiotic organism search (SOS) for solving capacitated vehicle routing problem (CVRP). SOS is a new approach in metaheuristics fields and never been used to solve discrete problems. A sophisticated decoding method to deal with a discrete problem setting in CVRP is applied using the basic symbiotic organism search (SOS) framework. The performance of the algorithm was evaluated on a set of benchmark instances and compared results with best known solution. The computational results show that the proposed algorithm can produce good solution as a preliminary testing. These results indicated that the proposed SOS can be applied as an alternative to solve the capacitated vehicle routing problem.

Keywords: Symbiotic organism search, vehicle routing problem, metaheuristics, Solution Representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
10450 Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm

Authors: P. Suryakumari, P. Kantarao

Abstract:

Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.

Keywords: RPD problem, voltage stability enhancement, CSO algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
10449 Enhanced Traveling Salesman Problem Solving by Genetic Algorithm Technique (TSPGA)

Authors: Buthainah Fahran Al-Dulaimi, Hamza A. Ali

Abstract:

The well known NP-complete problem of the Traveling Salesman Problem (TSP) is coded in genetic form. A software system is proposed to determine the optimum route for a Traveling Salesman Problem using Genetic Algorithm technique. The system starts from a matrix of the calculated Euclidean distances between the cities to be visited by the traveling salesman and a randomly chosen city order as the initial population. Then new generations are then created repeatedly until the proper path is reached upon reaching a stopping criterion. This search is guided by a solution evaluation function.

Keywords: Genetic algorithms, traveling salesman problem solving, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
10448 Bi-linear Complementarity Problem

Authors: Chao Wang, Ting-Zhu Huang Chen Jia

Abstract:

In this paper, we propose a new linear complementarity problem named as bi-linear complementarity problem (BLCP) and the method for solving BLCP. In addition, the algorithm for error estimation of BLCP is also given. Numerical experiments show that the algorithm is efficient.

Keywords: Bi-linear complementarity problem, Linear complementarity problem, Extended linear complementarity problem, Error estimation, P-matrix, M-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
10447 Method for Solving Fully Fuzzy Assignment Problems Using Triangular Fuzzy Numbers

Authors: Amit Kumar, Anila Gupta, Amarpreet Kaur

Abstract:

In this paper, a new method is proposed to find the fuzzy optimal solution of fuzzy assignment problems by representing all the parameters as triangular fuzzy numbers. The advantages of the pro-posed method are also discussed. To illustrate the proposed method a fuzzy assignment problem is solved by using the proposed method and the obtained results are discussed. The proposed method is easy to understand and to apply for finding the fuzzy optimal solution of fuzzy assignment problems occurring in real life situations.

Keywords: Fuzzy assignment problem, Ranking function, Triangular fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641