%0 Journal Article
	%A Mirigul Altan and  Huseyin Yildirim
	%D 2010
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 46, 2010
	%T Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles
	%U https://publications.waset.org/pdf/6311
	%V 46
	%X Plastics occupy wide place in the applications of
automotive, electronics and house goods. Especially reinforced
plastics become popular because of their high strength besides their
advantages of low weight and easy manufacturability. In this study,
mechanical and morphological properties of polypropylene (PP) and
high density polyethylene (HDPE) matrix composites reinforced with
surface modified nano titan dioxide (TiO2) particles were
investigated. Surface modification was made by coating the nano
powders with maleic anhydride grafted styrene ethylene butylene
styrene (SEBS-g-MA) and silane, respectively. After surface
modification, PP/TiO2 and HDPE/TiO2 composites were obtained by
using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.%
and 5 wt.%. Effects of surface modification were determined by
thermal and morphological analysis. SEBS-g-MA provided bridging
effect between TiO2 particles and polymer matrix while silane was
effective as a dispersant. Depending on that, homogenous structures
without agglomeration were obtained. Mechanical tests were
performed on the injection moldings of the composites for obtaining
the impact strength, tensile strength, stress at break, elongation and
elastic modulus. Reinforced HDPE and PP moldings gave higher
tensile strength and elastic modulus due to the rigid structure of TiO2.
Slight increment was seen in stress at break. Elongation and impact
strength decreased due to the stiffness of the nano titan dioxide.
	%P 654 - 659