Search results for: maritime robot
130 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator
Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori
Abstract:
In recent years, Japanese society has been aging, engendering a labor shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.
Keywords: Disturbance observer, Pneumatic balloon, Predictive functional control, Rubber artificial muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421129 Mobile Robot Control by Von Neumann Computer
Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov
Abstract:
The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.
Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369128 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857127 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369126 Analysis on Modeling and Simulink of DC Motor and its Driving System Used for Wheeled Mobile Robot
Authors: Wai Phyo Aung
Abstract:
Wheeled Mobile Robots (WMRs) are built with their Wheels- drive machine, Motors. Depend on their desire design of WMR, Technicians made used of DC Motors for motion control. In this paper, the author would like to analyze how to choose DC motor to be balance with their applications of especially for WMR. Specification of DC Motor that can be used with desire WMR is to be determined by using MATLAB Simulink model. Therefore, this paper is mainly focus on software application of MATLAB and Control Technology. As the driving system of DC motor, a Peripheral Interface Controller (PIC) based control system is designed including the assembly software technology and H-bridge control circuit. This Driving system is used to drive two DC gear motors which are used to control the motion of WMR. In this analyzing process, the author mainly focus the drive system on driving two DC gear motors that will control with Differential Drive technique to the Wheeled Mobile Robot . For the design analysis of Motor Driving System, PIC16F84A is used and five inputs of sensors detected data are tested with five ON/OFF switches. The outputs of PIC are the commands to drive two DC gear motors, inputs of Hbridge circuit .In this paper, Control techniques of PIC microcontroller and H-bridge circuit, Mechanism assignments of WMR are combined and analyzed by mainly focusing with the “Modeling and Simulink of DC Motor using MATLAB".Keywords: Control System Design, DC Motors, DifferentialDrive, H-bridge control circuit, MATLAB Simulink model, Peripheral Interface Controller (PIC), Wheeled Mobile Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11304125 Human Rights in Armed Conflicts and Constitutional Law
Authors: Antonios Maniatis
Abstract:
The main purpose of this paper is to determine the impact of both International Humanitarian Law and anti-piracy International Law on Constitutional Law. International Law is endowed with a rich set of norms on the protection of private individuals in armed conflicts and copes with the diachronic crime of maritime piracy, which may be considered as a private war in the high seas. Constitutional Law has been traditionally geared at two generations of fundamental rights. The paper will aim at answering the question “Which is the profile of 3G constitutional rights, particularly in the light of International Humanitarian Law?”
Keywords: Constitution, Humanitarian International Law, Piracy, 3G fundamental rights.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502124 A New Criterion Pose and Shape of Objects for Collision Risk Estimation
Authors: Do Hyeung Kim, Dae Hee Seo, Byung Doo Kim, Byung Gil Lee
Abstract:
As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic.
Keywords: Collision risk, Pose and shape, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909123 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System
Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia
Abstract:
This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.
Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061122 Simulation and Workspace Analysis of a Tripod Parallel Manipulator
Authors: A. Arockia Selvakumar, R. Sivaramakrishnan, Srinivasa Karthik.T.V, Valluri Siva Ramakrishna, B.Vinodh.
Abstract:
Industrial robots play a vital role in automation however only little effort are taken for the application of robots in machining work such as Grinding, Cutting, Milling, Drilling, Polishing etc. Robot parallel manipulators have high stiffness, rigidity and accuracy, which cannot be provided by conventional serial robot manipulators. The aim of this paper is to perform the modeling and the workspace analysis of a 3 DOF Parallel Manipulator (3 DOF PM). The 3 DOF PM was modeled and simulated using 'ADAMS'. The concept involved is based on the transformation of motion from a screw joint to a spherical joint through a connecting link. This paper work has been planned to model the Parallel Manipulator (PM) using screw joints for very accurate positioning. A workspace analysis has been done for the determination of work volume of the 3 DOF PM. The position of the spherical joints connected to the moving platform and the circumferential points of the moving platform were considered for finding the workspace. After the simulation, the position of the joints of the moving platform was noted with respect to simulation time and these points were given as input to the 'MATLAB' for getting the work envelope. Then 'AUTOCAD' is used for determining the work volume. The obtained values were compared with analytical approach by using Pappus-Guldinus Theorem. The analysis had been dealt by considering the parameters, link length and radius of the moving platform. From the results it is found that the radius of moving platform is directly proportional to the work volume for a constant link length and the link length is also directly proportional to the work volume, at a constant radius of the moving platform.Keywords: Three Degrees of freedom Parallel Manipulator (3DOF PM), ADAMS, Work volume, MATLAB, AUTOCAD, Pappus- Guldinus Theorem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996121 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation
Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon
Abstract:
This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321120 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140119 Optimal Straight Line Trajectory Generation in 3D Space using Deviation Algorithm
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper presents an efficient method of obtaining a straight-line motion in the tool configuration space using an articulated robot between two specified points. The simulation results & the implementation results show the effectiveness of the method.Keywords: Bounded deviation algorithm, Straight line motion, Tool configuration space, Joint space, TCV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2620118 Design and Implementation of Cricket-based Location Tracking System
Authors: Byung Ki Kim, Ho Min Jung, Jae-Bong Yoo, Wan Yeon Lee, Chan Young Park, Young Woong Ko
Abstract:
In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.Keywords: Cricket, Indoor Location Tracking, Mobile Robot, Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072117 Interactive Agents with Artificial Mind
Authors: Hirohide Ushida
Abstract:
This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.Keywords: Artificial mind, emotion, interactive agent, pet robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253116 Development of 3D Laser Scanner for Robot Navigation
Authors: A. Emre Ozturk, Ergun Ercelebi
Abstract:
Autonomous robotic systems need an equipment like a human eye for their movement. In this study a 3D laser scanner has been designed and implemented for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper.
Keywords: 3D Laser Scanner, embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430115 Kinematic Analysis of a Novel Complex DoF Parallel Manipulator
Authors: M.A. Hosseini, P. Ebrahimi Naghani
Abstract:
In this research work, a novel parallel manipulator with high positioning and orienting rate is introduced. This mechanism has two rotational and one translational degree of freedom. Kinematics and Jacobian analysis are investigated. Moreover, workspace analysis and optimization has been performed by using genetic algorithm toolbox in Matlab software. Because of decreasing moving elements, it is expected much more better dynamic performance with respect to other counterpart mechanisms with the same degrees of freedom. In addition, using couple of cylindrical and revolute joints increased mechanism ability to have more extended workspace.Keywords: Kinematics, Workspace, 3-CRS/PU, Parallel robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877114 Design and Construction of PIC-Based IR Remote Control Moving Robot
Authors: Sanda Win, Tin Shein, Khin Maung Latt
Abstract:
This document describes an electronic speed control designed to drive two DC motors from a 6 V battery pack to be controlled by a commercial universal infrared remote control hand set. Conceived for a tank-like vehicle, one motor drives the left side wheels or tracks and the other motor drives the right side. As it is shown here, there is a left-right steering input and a forward– backward throttles input, like would be used on a model car. It is designed using a microcontroller PIC16F873A.
Keywords: Assembly Language, Direction Control, SpeedControl, PIC 16F 873A
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5176113 De-noising Infrared Image Using OWA Based Filter
Authors: Ruchika, Munish Vashisht, S. Qamar
Abstract:
Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.
Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933112 Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms
Authors: J. Ramírez A., A. Rubiano F.
Abstract:
In this paper the direct kinematic model of a multiple applications three degrees of freedom industrial manipulator, was developed using the homogeneous transformation matrices and the Denavit - Hartenberg parameters, likewise the inverse kinematic model was developed using the same method, verifying that in the workload border the inverse kinematic presents considerable errors, therefore a genetic algorithm was implemented to optimize the model improving greatly the efficiency of the model.Keywords: Direct Kinematic, Genetic Algorithm, InverseKinematic, Optimization, Robot Manipulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332111 Neural Adaptive Switching Control of Robotic Systems
Authors: A. Denker, U. Akıncıoğlu
Abstract:
In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.Keywords: Neural networks, robotics, direct inverse control, predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184110 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.
Keywords: Energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208109 Control and Navigation with Knowledge Bases
Authors: Miloš Šeda, Tomáš Březina
Abstract:
In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.Keywords: fuzzy controller, fuzzification, rule base, inference, defuzzification, genetic algorithm, neural network, case-based reasoning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593108 Critical Analysis of the Hong Kong International Convention on Ship Recycling
Authors: K. P. Jain, J. F. J. Pruyn, J. J. Hopman
Abstract:
In May 2009, the International Maritime Organization (IMO) adopted the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships to address the growing concerns about the environmental, occupational health and safety risks related to ship recycling. The aim of the Hong Kong Convention is to provide a legally binding instrument which ensures that the process of ship recycling does not pose risks to human health, safety and to the environment. In this paper, critical analysis of the Hong Kong Convention has been carried out in order to study the effectiveness of the Convention to meet its objectives. The Convention has been studied in detail including its background, main features, major stakeholders, strengths and weaknesses. The Convention, though having several deficiencies, is a major breakthrough in not only recognizing but also dealing with the ill-practices associated with ship recycling.
Keywords: Hong Kong Convention, IMO, Ship breaking, Ship recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5454107 Directed Approach and Resolution of Practical Cases as a Motivation Tool for Self-Learning and Cooperation
Authors: B. Montero, M. Rico, A. Ares, R. Bouza
Abstract:
The development of competences and practical capacities of students is getting an important incidence into the guidelines of the European Higher Education Area (EHEA). The methodology applied in this work is based on the education through directed resolution of practical cases. All cases are related to professional tasks that the students will have to develop in their future career. The method is intended to form the necessary competences of students of the Marine Engineering and Maritime Transport Degree in the matter of “Physics". The experience was applied in the course of 2011/2012. Students were grouped, and a practical task was assigned to them, that should be developed and solved within the team. The aim was to realize students learning by three ways: their own knowledge, the contribution of their teammates and the teacher's direction. The results of the evaluation were compared with those obtained previously by the traditional teaching method.Keywords: Cooperation, Marine Engineering, Self-learning skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904106 A Type of Urban Genesis in Romanian Outer-Carpathian Area: the Genoan Cities
Authors: Denis Câprâroiu, Gica Pehoiu
Abstract:
The Mongol expansion in the West and the political and commercial interests arising from antagonisms between the Golden Horde and the Persian Ilkhanate determined the transformation of the Black Sea into an international trade turntable beginning with the last third of the XIIIth century. As the Volga Khanate attracted the maritime power of Genoa in the transcontinental project of deviating the Silk Road to its own benefit, the latter took full advantage of the new historical conjuncture, to the detriment of its rival, Venice. As a consequence, Genoa settled important urban centers on the Pontic shores, having mainly a commercial role. In the Romanian outer-Carpathian area, Vicina, Cetatea Albâ, and Chilia are notable, representing distinct, important types of cities within the broader context of the Romanian medieval urban genesis typology.Keywords: Black Sea, Vicina, Cetatea Albâ, Chilia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745105 Flexible Manufacturing System
Authors: Peter Kostal, Karol Velisek
Abstract:
Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.
Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4959104 Learning the Dynamics of Articulated Tracked Vehicles
Authors: Mario Gianni, Manuel A. Ruiz Garcia, Fiora Pirri
Abstract:
In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV.Keywords: Dirichlet processes, Gaussian processes, robot control learning, tracked vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783103 Computer - based Systems for High Speed Vessels Navigators – Engineers Training
Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou
Abstract:
With high speed vessels getting ever more sophisti-cated, travelling at higher and higher speeds and operating in With high speed vessels getting ever more sophisticated, travelling at higher and higher speeds and operating in areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. However, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the personnel and to select the navigators carefully.areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. How-ever, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the person-nel and to select the navigators carefully. KeywordsCBT - WBT systems, Human factors.Keywords: CBT - WBT systems, Human factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528102 Measurement and Analysis of Human Hand Kinematics
Authors: Tamara Grujic, Mirjana Bonkovic
Abstract:
Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reachto- grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.
Keywords: Human hand, kinematics, reach-to-grasp movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760101 CQAR: Closed Quarter Aerial Robot Design for Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas
Authors: Paul Y. Oh, William E. Green
Abstract:
This paper describes a prototype aircraft that can fly slowly, safely and transmit wireless video for tasks like reconnaissance, surveillance and target acquisition. The aircraft is designed to fly in closed quarters like forests, buildings, caves and tunnels which are often spacious but GPS reception is poor. Envisioned is that a small, safe and slow flying vehicle can assist in performing dull, dangerous and dirty tasks like disaster mitigation, search-and-rescue and structural damage assessment.Keywords: Unmanned aerial vehicles, autonomous collisionavoidance, optic flow, near-Earth environments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761